Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PeerJ ; 12: e18171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39469591

RESUMO

Background: Plant growth and development can be greatly impacted by drought stress. Suitable plant growth promoting rhizobacteria (PGPR) or biochar (BC) application has been shown to alleviate drought stress for plants. However, their co-application has not been extensively explored in this regard. Methods: We isolated bacterial strains from rhizospheric soils of plants from arid soils and characterized them for plant growth promoting characteristics like IAA production and phosphate solubilization as well as for drought tolerance. Three bacterial strains or so called PGPRs, identified as Bacillus thuringiensis, Bacillus tropicus, and Bacillus paramycoides based on their 16S rRNA, were screened for further experiments. Wheat was grown on normal, where soil moisture was maintained at 75% of water holding capacity (WHC), and induced-drought (25% WHC) stressed soil in pots. PGPRs were applied alone or in combination with a biochar derived from pyrolysis of tree wood. Results: Drought stress substantially inhibited wheat growth. However, biochar addition under stressed conditions significantly improved the wheat growth and productivity. Briefly, it increased straw yield by 25%, 100-grain weight by 15% and grain yield by 10% compared to the control. Moreover, co-application of biochar with PGPRs B. thuringiensis, B. tropicus and B. paramycoides further enhanced straw yield by 37-41%, 100-grain weight by 30-36%, and grain yield by 22-22.57%, respectively. The co-application also enhanced soil quality by increasing plant-available phosphorus by 4-31%, microbial biomass by 33-45%, and soil K+/Na+ ratio by 41-44%. Conclusion: Co-application of PGPRs and biochar alleviated plant drought stress by improving nutrient availability and absorption. Acting as a nutrient reservoir, biochar worked alongside PGPRs, who solubilized nutrients from the former and promoted wheat growth. We recommend that the co-application of suitable PGPRs and biochar is a better technology to produce wheat under drought conditions than using these enhancers separately.


Assuntos
Carvão Vegetal , Secas , Microbiologia do Solo , Solo , Triticum , Triticum/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Solo/química , Bacillus/fisiologia
2.
PeerJ ; 12: e17984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247545

RESUMO

Background: Sequestering carbon dioxide (CO2) in agricultural soils promises climate change mitigation as well as sustainable ecosystem services. In order to stabilize crop residues as soil carbon (C), addition of mineral nutrients in excess to crop needs is suggested as an inevitable practice. However, the effect of two macronutrients i.e., nitrogen (N) & phosphorus (P), on C cycling has been found contradictory. Mineral N usually decreases whereas mineral P increases the soil organic C (SOC) mineralization and microbial biomass. How the addition of these macronutrients in inorganic form to an organic-matter poor soil affect C cycling remains to be investigated. Methods: To reconcile this contradiction, we tested the effect of mineral N (120 kg N ha-1) and/or P (60 kg N ha-1) in presence or absence of maize litter (1 g C kg-1 soil) on C cycling in an organic-matter poor soil (0.87% SOC) in a laboratory incubation. Soil respiration was measured periodically during the incubation whereas various soil variables were measured at the end of the incubation. Results: Contrary to literature, P addition stimulated soil C mineralization very briefly at start of incubation period and released similar total cumulative CO2-C as in control soil. We attributed this to low organic C content of the soil as P addition could desorb very low amounts of labile C for microbial use. Adding N with litter built up the largest microbial biomass (144% higher) without inducing any further increase in CO2-C release compared to litter only addition. However, adding P with litter did not induce any increase in microbial biomass. Co-application of inorganic N and P significantly increased C mineralization in presence (19% with respect to only litter amended) as well as absence (41% with respect to control soil) of litter. Overall, our study indicates that the combined application of inorganic N and P stabilizes added organic matter while depletes the already unamended soil.


Assuntos
Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Solo/química , Fósforo/química , Nitrogênio/metabolismo , Dióxido de Carbono/farmacologia , Biomassa , Ciclo do Carbono , Carbono/metabolismo , Agricultura/métodos , Zea mays/química , Fertilizantes/análise
3.
Front Plant Sci ; 14: 1263813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126015

RESUMO

Introduction: Nanoparticles play a vital role in environmental remediation on a global scale. In recent years, there has been an increasing demand to utilize nanoparticles in wastewater treatment due to their remarkable physiochemical properties. Methods: In the current study, manganese oxide nanoparticles (MnO-NPs) were synthesized from the Bacillus flexus strain and characterized by UV/Vis spectroscopy, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Results: The objective of this study was to evaluate the potential of biosynthesized MnO-NPs to treat wastewater. Results showed the photocatalytic degradation and adsorption potential of MnO-NPs for chemical oxygen demand, sulfate, and phosphate were 79%, 64%, and 64.5%, respectively, depicting the potential of MnO-NPs to effectively reduce pollutants in wastewater. The treated wastewater was further utilized for the cultivation of wheat seedlings through a pot experiment. It was observed that the application of treated wastewater showed a significant increase in growth, physiological, and antioxidant attributes. However, the application of treated wastewater led to a significant decrease in oxidative stress by 40%. Discussion: It can be concluded that the application of MnO-NPs is a promising choice to treat wastewater as it has the potential to enhance the growth, physiological, and antioxidant activities of wheat seedlings.

4.
Plants (Basel) ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687305

RESUMO

Water scarcity due to overuse and growing water pollution has led to the need for upgrading of conventional methods of wastewater treatment. The biological synthesis of zinc oxide nanoparticles (ZnO-NPs) and their photocatalytic capacity to degrade contaminants offer a promising and environment-friendly approach to municipal wastewater treatment. This technique is advantageous due to its cost-effectiveness, sustainability, and reduction in toxic residual substances. In this study, microbial-synthesized ZnO-NPs were used for the treatment of municipal wastewater. The objective of this study was to evaluate the potential of treated wastewater for wheat crop cultivation. Zinc oxide nanoparticles were synthesized from a pre-isolated bacterial strain, namely Shewanela sp., and characterized using UV-VIS, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses. The results showed that after the treatment of wastewater, the concentration of total dissolve solids (TDS), the chemical oxygen demand (COD), and sulfate and phosphate levels decreased by 76.5%, 57.1%, 81.1%, and 67.4%, respectively. However, the application of treated wastewater increased chlorophyll, carotenoids, and antioxidants by 45%, 40.8%, and 10.5 to 30.6%, respectively. Further, the application of treated wastewater also significantly decreased oxidative stress induced by hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 8.1% and 30.1%, respectively. In conclusion, biosynthesized ZnO-NPs could be an important choice to treat municipal wastewater and to improve wheat productivity.

5.
PeerJ ; 10: e14358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405015

RESUMO

Background: Azo dyes are recalcitrant organic pollutants present in textile industry effluents. Conventional treatment methods to remove them come with a range of disadvantages. Nanoparticles and their nanocomposites offer more efficient, less expensive and easy to handle wastewater treatment alternative. Methods: In this study, nanoparticles of nickel oxide (NiO-NPs), copper oxide (CuO-NPs) and their nanocomposite (NiO/CuO-NC) were synthesized using co-precipitation method. The functional groups present on the surface of synthesized nanomaterials were verified using Fourier-transform infrared spectroscopy (FTIR). Surface morphology was assessed using scanning electron microscopy (SEM) whereas purity, shape and size of the crystallite were determined using X-ray diffraction (XRD) technique. The potential of these nanomaterials to degrade three dyes i.e., Reactive Red-2 (RR-2), Reactive Black-5 (RB-5) and Orange II sodium salt (OII) azo dyes, was determined in an aqueous medium under visible light (photocatalysis). The photodegradation effectiveness of all nanomaterials was evaluated under different factors like nanomaterial dose (0.02-0.1 g 10 mL-1), concentration of dyes (20-100 mg L-1), and irradiation time (60-120 min). They were also assessed for their potential to adsorb RR-2 and OII dyes. Results: Results revealed that at optimum concentration (60 mgL-1) of RR-2, RB-5, and OII dyes, NiO-NPs degraded 90, 82 and 83%, CuO-NPs degraded 49, 34, and 44%, whereas the nanocomposite NiO/CuO-NC degraded 92, 93, and 96% of the said dyes respectively. The nanomaterials were categorized as the efficient degraders of the dyes in the order: NiO/CuO-NC > NiO-NPs > CuO-NPs. The highest degradation potential shown by the nanocomposite was attributed to its large surface area, small particles size, and quick reactions which were proved by advance analytical techniques. The equilibrium and kinetic adsorption of RR-2 and OII on NiO-NPs, CuO-NPs, and NiO/CuO-NC were well explained with Langmuir and Pseudo second order model, respectively (R2 ≥ 0.96). The maximum RR-2 adsorption (103 mg/g) was obtained with NiO/CuO-NC. It is concluded that nanocomposites are more efficient and promising for the dyes degradation from industrial wastewater as compared with dyes adsorption onto individual NPs. Thus, the nanocomposite NiO/CuO-NC can be an excellent candidate for photodegradation as well as the adsorption of the dyes in aqueous media.


Assuntos
Nanocompostos , Nanopartículas , Cobre/química , Adsorção , Cinética , Água , Nanopartículas/química , Nanocompostos/química , Compostos Azo/química , Corantes
6.
Chem Biol Technol Agric ; 9(1): 58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37520585

RESUMO

Sustainable food security is a major challenge in today's world, particularly in developing countries. Among many factors, environmental stressors, i.e., drought, salinity and heavy metals are major impediments in achieving sustainable food security. This calls for finding environment-friendly and cheap solutions to address these stressors. Plant growth-promoting rhizobacteria (PGPR) have long been established as an environment-friendly means to enhance agricultural productivity in normal and stressed soils and are being applied at field scale. Similarly, pyrolyzing agro-wastes into biochar with the aim to amend soils is being proposed as a cheap additive for enhancement of soil quality and crop productivity. Many pot and some field-scale experiments have confirmed the potential of biochar for sustainable increase in agricultural productivity. Recently, many studies have combined the PGPR and biochar for improving soil quality and agricultural productivity, under normal and stressed conditions, with the assumption that both of these additives complement each other. Most of these studies have reported a significant increase in agricultural productivity in co-applied treatments than sole application of PGPR or biochar. This review presents synthesis of these studies in addition to providing insights into the mechanistic basis of the interaction of the PGPR and biochar. Moreover, this review highlights the future perspectives of the research in order to realize the potential of co-application of the PGPR and biochar at field scale.

7.
Sci Rep ; 11(1): 8429, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875737

RESUMO

Given the rapidly increasing use of metal oxide nanoparticles in agriculture as well as their inadvertent addition through sewage sludge application to soils, it is imperative to assess their possible toxic effects on soil functions that are vital for healthy crop production. In this regard, we designed a lab study to investigate the potential toxicity of one of the most produced nanoparticles, i.e. zinc oxide nanoparticles (nZnO), in a calcareous soil. Microcosms of 80 g of dry-equivalent fresh soils were incubated in mason jars for 64 days, after adding 100 or 1000 mg of biogenically produced nZnO kg-1 soil. Moreover, we also added rice-straw derived biochar at 1 or 5% (w: w basis) hypothesizing that the biochar would alleviate nZnO-induced toxicity given that it has been shown to adsorb and detoxify heavy metals in soils. We found that the nZnO decreased microbial biomass carbon by 27.0 to 33.5% in 100 mg nZnO kg-1 soil and by 39.0 to 43.3% in 1000 mg nZnO kg-1 soil treatments across biochar treatments in the short term i.e. 24 days after incubation. However, this decrease disappeared after 64 days of incubation and the microbial biomass in nZnO amended soils were similar to that in control soils. This shows that the toxicity of nZnO in the studied soil was ephemeral and transient which was overcome by the soil itself in a couple of months. This is also supported by the fact that the nZnO induced higher cumulative C mineralization (i.e. soil respiration) at both rates of addition. The treatment 100 mg nZnO kg-1 soil induced 166 to 207%, while 1000 mg nZnO kg-1 soil induced 136 to 171% higher cumulative C mineralization across biochar treatments by the end of the experiment. However, contrary to our hypothesis increasing the nZnO addition from 100 to 1000 mg nZnO kg-1 soil did not cause additional decrease in microbial biomass nor induced higher C mineralization. Moreover, the biochar did not alleviate even the ephemeral toxicity that was observed after 24d of incubation. Based on overall results, we conclude that the studied soil can function without impairment even at 1000 mg kg-1 concentration of nZnO in it.

8.
Environ Sci Pollut Res Int ; 28(22): 28307-28318, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33537856

RESUMO

Discharge of untreated textile wastewaters loaded with dyes is not only contaminating the soil and water resources but also posing a threat to the health and socioeconomic life of the people. Hence, there is a need to devise the strategies for effective treatment of such wastewaters. The present study reports the catalytic potential of biogenic ZnO nanoparticles (ZnO NPs) synthesized by using a bacterial strain Pseudochrobactrum sp. C5 for degradation of dyes and wastewater treatment. The catalytic potential of the biogenic ZnO NPs for degradation of dyes and wastewater treatment was also compared with that of the chemically synthesized ones. The characterization of the biogenic ZnO NPs through FT-IR, XRD, and field emission scanning electron microscopy (FESEM) indicated that these are granular agglomerated particles having a size range of 90-110 nm and zeta potential of -27.41 mV. These catalytic NPs had resulted into almost complete (> 90%) decolorization of various dyes including the methanol blue and reactive black 5. These NPs also resulted into a significant reduction in COD, TDS, EC, pH, and color of two real wastewaters spiked with reactive black 5 and reactive red 120. The findings of this study suggest that the biosynthesized ZnO NPs might serve as a potential green solution for treatment of dye-loaded textile wastewaters.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Purificação da Água , Óxido de Zinco , Corantes , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
9.
3 Biotech ; 10(2): 40, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31988834

RESUMO

This study was conducted to determine the ability of a bacterial strain FSS2C to ameliorate growth of wheat plants grown under induced stress of reactive black-5 (RB-5). The strain was taxonomically identified as Bacillus firmus on the basis of its 16S rRNA gene sequence analysis. The B. firmus FSS2C was found physiologically potent in phosphate solubilization, indole-3-acetic acid production and ammonia synthesis in the presence of varying concentrations of azo dye RB-5. Moreover, it decolorized RB-5 in vitro with the maximum decolorization (%) found at pH 7 and 30 °C. Inoculation of wheat plants, growing under stress induced by RB-5 dye, with rifampicin-resistant derivatives of the strain FSS2C substantially reduced the cellular oxidative stress, thereby resulting in higher plant biomass as compared to non-inoculated plants. Similarly, the inoculated plants revealed higher nutrient content in shoots as compared to non-inoculated ones. It was concluded that B. firmus strain FSS2C alleviated the oxidative stress impairment caused by reactive black-5 in wheat plants. Therefore, the strain can be used as bio-inoculant in wastewater irrigated soils.

10.
Plants (Basel) ; 8(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817397

RESUMO

Lead (Pb)-polluted soils pose a serious threat to human health, particularly by transmitting this heavy metal to the food chain via the crops grown on them. The application of novel amendments in Pb-polluted soils can significantly reduce this problem. In this research, we report the effects of various organic and inorganic amendments i.e., bentonite (BN), biochar (BR), lignin (LN), magnesium potassium phosphate cement (CM) and iron hydroxyl phosphate (FeHP), on the Pb bioavailability in Pb-polluted soil, upon Pb distribution in shoots, roots, grain, the translocation factor (TF) and the bioconcentration factor (BCF) of Pb in pea (Pisum sativum L.) grain. Furthermore, effects of the said amendments on the plant parameters, as well as grain biochemistry and nutritional quality, were also assessed. Lead pollution significantly elevated Pb concentrations in roots, shoots and grain, as well as the grain TF and BCF of Pb, while reducing the nutritional quality and biochemistry of grain, plant height, relative water content (RWC), chlorophyll contents (chl a and chl b) and the dry weight (DW) of shoot, root and grain. The lowest Pb distribution in shoots, roots and grain were found with BN, FeHP and CM, compared to our control. Likewise, the BN, FeHP and CM significantly lowered the TF and BCF values of Pb in the order FeHP > CM > BN. Similarly, the highest increase in plant height, shoot, root and grain DW, RWC, chl a and chl b contents, grain biochemistry and the micronutrient concentrations, were recorded with BR amendment. Biochar also reduced grain polyphenols as well as plant oxidative stress. Given that the BR and BN amendments gave the best results, we propose to explore their potential synergistic effect to reduce Pb toxicity by using them together in future research.

11.
PeerJ ; 7: e7130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31328029

RESUMO

Atmospheric nitrogen (N) deposition increases N availability in soils, with consequences affecting the decomposition of soil carbon (C). The impacts of increasing N availability on surface soil C dynamics are well studied. However, subsurface soils have been paid less attention although more than 50% soil C stock is present below this depth (below 20 cm). This study was designed to investigate the response of surface (0-20 cm) and subsurface (20-40 cm and 40-60 cm) C dynamics to 0 (0 kg N ha-1), low (70 kg N ha-1) and high (120 kg N ha-1) levels of N enrichment. The soils were sampled from a cropland and a grass lawn and incubated at 25 °C and 60% water holding capacity for 45 days. Results showed that N enrichment significantly decreased soil C mineralization (Rs) in all the three soil layers in the two studied sites (p < 0.05). The mineralization per unit soil organic carbon (SOC) increased with profile depth in both soils, indicating the higher decomposability of soil C down the soil profile. Moreover, high N level exhibited stronger suppression effect on Rs than low N level. Rs was significantly and positively correlated with microbial biomass carbon explaining 80% of variation in Rs. Overall; these results suggest that N enrichment may increase C sequestration both in surface and subsurface layers, by reducing C loss through mineralization.

12.
J Environ Manage ; 241: 468-478, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30967352

RESUMO

Livestock manure is a valuable source of nutrients for plants. However, poor handling practices during storage resulted in nutrient losses from the manure and decrement in its nitrogen (N) fertilizer value. We explored the influence of divergent storage methods on manure chemical composition, carbon (C) and N losses to the environment as well as fertilizer value of storage products after their application to the wheat. Fresh buffalo manure (FM) was subjected to different storage operations for a period of ∼6 months, (i) fermentation by covering with a plastic sheet (CM) (ii) placed under the roof (RM) (iii) heap was unturned (SM) to remain stacked at an open space and (iv) manure heap turned monthly (TM) to make compost. During storage, 8, 24, 45 and 46% of the initial Ntotal was lost from CM, RM, SM, and TM, respectively. The respective C losses from these treatments were 16, 34, 47 and 44% of the initial C content. After stored manures application to the wheat crop, mineral N in the soil remained 27% higher in CM (14.1 vs. 11.1 kg ha-1) and 3% (10.8 vs. 11.1 kg ha-1) lower in SM compared to FM treatment. In contrast, microbial biomass C and N was 35 (509 vs.782 mg C kg-1 soil) and 25% (278 vs.370 mg N kg-1 soil) lower in CM than FM treatment, respectively indicating lower N immobilization of CM in the soil. These findings could result in the highest grain yield (5166 kg ha-1) and N uptake (117 kg ha-1) in CM and the lowest in SM treatments (3105 and 61 kg ha-1, respectively). Similarly, wheat crop recovered 44, 15 and 13% N from CM, TM and SM, respectively. Hence, management operations play a critical role in conserving N during storage phase and after stored manure application to the field. Among the studied operations, storing animal manure under an impermeable plastic sheet is a much better and cheaper option for decreasing N losses during storage and improving wheat yield when incorporated into the soil. Therefore, by adopting this manure storage technique, farmers can improve the agro-environmental value of animal manure in Pakistan.


Assuntos
Esterco , Solo , Animais , Fertilizantes , Nitrogênio , Nutrientes , Paquistão , Triticum
13.
3 Biotech ; 8(10): 425, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30305994

RESUMO

This study was conducted to elucidate the inherent potential of Bacillus sp. MR-1/2, which was isolated from root zone of maize crop grown on a textile wastewater-irrigated soil. The isolated strain was identified through its ribosomal RNA sequence. Under in vitro conditions, the strain demonstrated its tolerance for high concentrations of various heavy metal ions as determined by minimum inhibitory concentration. Moreover, the strain MR-1/2 exhibited many important phytobeneficial traits such as inorganic P solubilization and 1-aminocyclopropane-1-carboxylate (ACC) deaminase ability even under high metal and salt stress. Results showed that the strain proficiently decolorizes various azo dye compounds, e.g., reactive black-5, reactive red-120, and direct blue-1 and congo red, in broth culture. The bioremediation potential of the strain MR-1/2 was further confirmed by analyzing the retrieved azoreductase gene sequence through bioinformatics tools, whereby a subsequent prediction revealed that the azoreductase enzyme activity was involved in decolorization process. When mung bean seeds were grown in pots under various concentrations of decolorized and non-decolorized azo dye, the Bacillus sp. MR-1/2 not only alleviated the azo dye toxicity, but also increased the plant growth parameters. In conclusion, the strain MR-1/2 efficiently decolorized the azo dyes and helped in mung bean plant growth by alleviating azo dye toxicity.

14.
PeerJ ; 6: e4802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844965

RESUMO

Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15-50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N) has been studied previously. However, how does the azo dye contamination affect soil carbon (C) cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg-1 dry soil), bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05). Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg-1 dry soil) contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.

15.
Glob Chang Biol ; 24(9): 4238-4250, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29682861

RESUMO

Most current models of soil C dynamics predict that climate warming will accelerate soil C mineralization, resulting in a long-term CO2 release and positive feedback to global warming. However, ecosystem warming experiments show that CO2 loss from warmed soils declines to control levels within a few years. Here, we explore the temperature dependence of enzymatic conversion of polymerized soil organic C (SOC) into assimilable compounds, which is presumed the rate-limiting step of SOC mineralization. Combining literature review, modelling and enzyme assays, we studied the effect of temperature on activity of enzymes considering their thermal inactivation and catalytic activity. We defined the catalytic power of enzymes (Epower ) as the cumulative amount of degraded substrate by one unit of enzyme until its complete inactivation. We show a universal pattern of enzyme's thermodynamic properties: activation energy of catalytic activity (EAcat ) < activation energy of thermal inactivation (EAinact ). By investing in stable enzymes (high EAinact ) having high catalytic activity (low EAcat ), microorganisms may maximize the Epower of their enzymes. The counterpart of such EAs' hierarchical pattern is the higher relative temperature sensitivity of enzyme inactivation than catalysis, resulting in a reduction in Epower under warming. Our findings could explain the decrease with temperature in soil enzyme pools, microbial biomass (MB) and carbon use efficiency (CUE) reported in some warming experiments and studies monitoring the seasonal variation in soil enzymes. They also suggest that a decrease in soil enzyme pools due to their faster inactivation under warming contributes to the observed attenuation of warming effect on soil C mineralization. This testable theory predicts that the ultimate response of SOC degradation to warming can be positive or negative depending on the relative temperature response of Epower and microbial production of enzymes.


Assuntos
Ciclo do Carbono , Enzimas/química , Aquecimento Global , Temperatura Alta/efeitos adversos , Microbiologia do Solo , Solo/química , Bactérias/enzimologia , Catálise , Fungos/enzimologia
16.
Bioresour Technol ; 235: 176-184, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28365345

RESUMO

In this study, a bacterial strain SR-2-1/1 was isolated from textile wastewater-irrigated soil for its concurrent potential of plant growth promotion and azo-dye decolorization. Analysis of 16S rRNA gene sequence confirmed its identity as Bacillus sp. The strain tolerated high concentrations (i.e. up to 1000mgL-1) of metals (Ni2+, Cd2+, Co2+, Zn2+, and Cr6+) and efficiently decolorized the azo dyes (i.e. reactive black-5, reactive red-120, direct blue-1 and congo red). It also demonstrated considerable in vitro phosphate solubilizing and 1-aminocyclopropane-1-carboxylic acid deaminase abilities at high metal and salt levels. Bioinformatics analysis of its 537bp azoreductase gene and deduced protein revealed that it decolorized azo dyes through NADH-ubiquinone:oxidoreductase enzyme activity. The deduced protein was predicted structurally and functionally different to those of its closely related database proteins. Thus, the strain SR-2-1/1 is a powerful bioinoculant for bioremediation of textile wastewater contaminated soils in addition to stimulation of plant growth.


Assuntos
Bacillus/metabolismo , Ubiquinona/metabolismo , Compostos Azo/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , NAD/metabolismo , RNA Ribossômico 16S/genética
17.
Sci Rep ; 7: 41965, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155886

RESUMO

We examined time-dependent effect of iron oxide nanoparticles (IONPs) at a rate of 2000 mg kg-1 soil on Cynodon dactylon litter (3 g kg-1) decomposition in an arid sandy soil. Overall, heterotrophic cultivable bacterial and fungal colonies, and microbial biomass carbon were significantly decreased in litter-amended soil by the application of nanoparticles after 90 and 180 days of incubation. Time dependent effect of nanoparticles was significant for microbial biomass in litter-amended soil where nanoparticles decreased this variable from 27% after 90 days to 49% after 180 days. IONPs decreased CO2 emission by 28 and 30% from litter-amended soil after 90 and 180 days, respectively. These observations indicated that time-dependent effect was not significant on grass-litter carbon mineralization efficiency. Alternatively, nanoparticles application significantly reduced mineral nitrogen content in litter-amended soil in both time intervals. Therefore, nitrogen mineralization efficiency was decreased to 60% after 180 days compared to that after 90 days in nanoparticles grass-litter amended soil. These effects can be explained by the presence of labile Fe in microbial biomass after 180 days in nanoparticles amendment. Hence, our results suggest that toxicity of IONPs to soil functioning should consider before recommending their use in agro-ecosystems.


Assuntos
Cynodon/química , Nanopartículas Metálicas/efeitos adversos , Microbiologia do Solo , Solo/química , Biomassa , Ciclo do Carbono , Compostos Férricos/química , Nanopartículas Metálicas/química , Ciclo do Nitrogênio
18.
J Hazard Mater ; 324(Pt B): 298-305, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810328

RESUMO

We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg-1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg-1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions.


Assuntos
Carbono/metabolismo , Nanopartículas Metálicas/toxicidade , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Microbiologia do Solo , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade , Carga Bacteriana , Dióxido de Carbono/análise , Phoeniceae/metabolismo , Solo
19.
World J Microbiol Biotechnol ; 32(11): 181, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27646208

RESUMO

Microbial biotechnologies for the decolorization of textile wastewaters have attracted worldwide attention because of their economic suitability and easiness in handling. However, the presence of high amounts of salts and metal ions in textile wastewaters adversely affects the decolorization efficiency of the microbial bioresources. In this regard, the present study was conducted to isolate salt tolerant bacterial strains which might have the potential to decolorize azo dyes even in the presence of multi-metal ion mixtures. Out of the tested 48 bacteria that were isolated from an effluent drain, the strain NA6 was found relatively more efficient in decolorizing the reactive yellow-2 (RY2) dye in the presence of 50 g L(-1) NaCl. Based on the similarity of its 16S rRNA gene sequence and its position in a phylogenetic tree, this strain was designated as Proteus sp. NA6. The strain NA6 showed efficient decolorization (>90 %) of RY2 at pH 7.5 in the presence of 50 g L(-1) NaCl under static incubation at 30 °C. This strain also had the potential to efficiently decolorize other structurally related azo dyes in the presence of 50 g L(-1) NaCl. Moreover, Proteus sp. NA6 was found to resist the presence of different metal ions (Co(+2), Cr(+6), Zn(+2), Pb(+2), Cu(+2), Cd(+2)) and was capable of decolorizing reactive dyes in the presence of different levels of the mixtures of these metal ions along with 50 g L(-1) NaCl. Based on the findings of this study, it can be suggested that Proteus sp. NA6 might serve as a potential bioresource for the biotechnologies involving bioremediation of textile wastewaters containing the metal ions and salts.


Assuntos
Corantes/química , Metais Pesados/química , Proteus/isolamento & purificação , Cloreto de Sódio/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Resíduos Industriais/análise , Filogenia , Proteus/genética , Análise de Sequência de RNA , Indústria Têxtil/métodos , Águas Residuárias/microbiologia
20.
Environ Sci Pollut Res Int ; 23(17): 16904-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27272922

RESUMO

Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.


Assuntos
Biodegradação Ambiental , Fungos/metabolismo , Praguicidas , Praguicidas/análise , Praguicidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA