Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 14(1): 6730, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872159

RESUMO

Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.


Assuntos
Sinapsinas , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais Geneticamente Modificados
2.
Front Mol Neurosci ; 16: 1115880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533751

RESUMO

Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.

3.
Sci Rep ; 13(1): 5366, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005431

RESUMO

Expansion microscopy (ExM) improves imaging quality by physically enlarging the biological specimens. In principle, combining a large expansion factor with optical super-resolution should provide extremely high imaging precision. However, large expansion factors imply that the expanded specimens are dim and are therefore poorly suited for optical super-resolution. To solve this problem, we present a protocol that ensures the expansion of the samples up to 10-fold, in a single expansion step, through high-temperature homogenization (X10ht). The resulting gels exhibit a higher fluorescence intensity than gels homogenized using enzymatic digestion (based on proteinase K). This enables the sample analysis by multicolor stimulated emission depletion (STED) microscopy, for a final resolution of 6-8 nm in neuronal cell cultures or isolated vesicles. X10ht also enables the expansion of 100-200 µm thick brain samples, up to 6-fold. The better epitope preservation also enables the use of nanobodies as labeling probes and the implementation of post-expansion signal amplification. We conclude that X10ht is a promising tool for nanoscale resolution in biological samples.


Assuntos
Temperatura Alta , Neurônios , Microscopia de Fluorescência/métodos , Encéfalo , Géis
4.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112685

RESUMO

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Assuntos
Encéfalo , Dieta Cetogênica , Animais , Encéfalo/metabolismo , Carboidratos , Corpos Cetônicos/metabolismo , Camundongos , Proteoma/metabolismo
5.
Front Mol Neurosci ; 15: 674243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493323

RESUMO

Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using - in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.

6.
Neurooncol Adv ; 3(1): vdab140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34647026

RESUMO

BACKGROUND: Pharmaceutical intervention in the CNS is hampered by the shielding function of the blood-brain barrier (BBB). To induce clinical anesthesia, general anesthetics such as isoflurane readily penetrate the BBB. Here, we investigated whether isoflurane can be utilized for therapeutic drug delivery. METHODS: Barrier function in primary endothelial cells was evaluated by transepithelial/transendothelial electrical resistance, and nanoscale STED and SRRF microscopy. In mice, BBB permeability was quantified by extravasation of several fluorescent tracers. Mouse models including the GL261 glioma model were evaluated by MRI, immunohistochemistry, electron microscopy, western blot, and expression analysis. RESULTS: Isoflurane enhances BBB permeability in a time- and concentration-dependent manner. We demonstrate that, mechanistically, isoflurane disturbs the organization of membrane lipid nanodomains and triggers caveolar transport in brain endothelial cells. BBB tightness re-establishes directly after termination of anesthesia, providing a defined window for drug delivery. In a therapeutic glioblastoma trial in mice, simultaneous exposure to isoflurane and cytotoxic agent improves efficacy of chemotherapy. CONCLUSIONS: Combination therapy, involving isoflurane-mediated BBB permeation with drug administration has far-reaching therapeutic implications for CNS malignancies.

7.
Cell Rep ; 27(7): 2212-2228.e7, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091457

RESUMO

iPSC-derived human neurons are expected to revolutionize studies on brain diseases, but their functional heterogeneity still poses a problem. Key sources of heterogeneity are the different cell culture systems used. We show that an optimized autaptic culture system, with single neurons on astrocyte feeder islands, is well suited to culture, and we analyze human iPSC-derived neurons in a standardized, systematic, and reproducible manner. Using classically differentiated and transcription factor-induced human glutamatergic and GABAergic neurons, we demonstrate that key features of neuronal morphology and function, including dendrite structure, synapse number, membrane properties, synaptic transmission, and short-term plasticity, can be assessed with substantial throughput and reproducibility. We propose our optimized autaptic culture system as a tool to study functional features of human neurons, particularly in the context of disease phenotypes and experimental therapy.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Dendritos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Neurônios GABAérgicos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Ratos Wistar , Reprodutibilidade dos Testes
8.
Elife ; 82019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30883328

RESUMO

SNAP-25 is an essential component of SNARE complexes driving fast Ca2+-dependent exocytosis. Yet, the functional implications of the tandem-like structure of SNAP-25 are unclear. Here, we have investigated the mechanistic role of the acylated "linker" domain that concatenates the two SNARE motifs within SNAP-25. Refuting older concepts of an inert connector, our detailed structure-function analysis in murine chromaffin cells demonstrates that linker motifs play a crucial role in vesicle priming, triggering, and fusion pore expansion. Mechanistically, we identify two synergistic functions of the SNAP-25 linker: First, linker motifs support t-SNARE interactions and accelerate ternary complex assembly. Second, the acylated N-terminal linker segment engages in local lipid interactions that facilitate fusion triggering and pore evolution, putatively establishing a favorable membrane configuration by shielding phospholipid headgroups and affecting curvature. Hence, the linker is a functional part of the fusion complex that promotes secretion by SNARE interactions as well as concerted lipid interplay.


Assuntos
Células Cromafins/metabolismo , Fosfolipídeos/metabolismo , Vesículas Secretórias/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Feminino , Masculino , Camundongos , Ligação Proteica , Multimerização Proteica , Ratos , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética
9.
Front Cell Neurosci ; 12: 304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254567

RESUMO

The two paralogs of the calcium-dependent activator protein for secretion (CAPS) are priming factors for synaptic vesicles (SVs) and neuropeptide containing large dense-core vesicles (LDCVs). Yet, it is unclear whether CAPS1 and CAPS2 regulate exocytosis of these two vesicle types differentially in dorsal root ganglion (DRG) neurons, wherein synaptic transmission and neuropeptide release are of equal importance. These sensory neurons transfer information from the periphery to the spinal cord (SC), releasing glutamate as the primary neurotransmitter, with co-transmission via neuropeptides in a subset of so called peptidergic neurons. Neuropeptides are key components of the information-processing machinery of pain perception and neuropathic pain generation. Here, we compared the ability of CAPS1 and CAPS2 to support priming of both vesicle types in single and double knock-out mouse (DRG) neurons using a variety of high-resolution live cell imaging methods. While CAPS1 was localized to synapses of all DRG neurons and promoted synaptic transmission, CAPS2 was found exclusively in peptidergic neurons and mediated LDCV exocytosis. Intriguingly, ectopic expression of CAPS2 empowered non-peptidergic neurons to drive LDCV fusion, thereby identifying CAPS2 as an essential molecular determinant for peptidergic signaling. Our results reveal that these distinct functions of both CAPS paralogs are based on their differential subcellular localization in DRG neurons. Our data suggest a major role for CAPS2 in neuropathic pain via control of neuropeptide release.

10.
Neuroscience ; 346: 1-13, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28089870

RESUMO

Peptidergic dorsal root ganglion (DRG) neurons transmit sensory and nociceptive information from the periphery to the central nervous system. Their synaptic activity is profoundly affected by neuromodulatory peptides stored and released from large dense-core vesicles (LDCVs). However, the mechanism of peptide secretion from DRG neurons is poorly understood. Using total internal reflection fluorescence microscopy (TIRFM), we visualized individual LDCVs loaded with fluorescent neuropeptide Y (NPY) and analyzed their stimulation-dependent release. We tested several protocols and found an overall low stimulation-secretion coupling that increased after raising intracellular Ca2+ concentration by applying a weak pre-stimulus. Interestingly, the stimulation protocol also influenced the mechanism of LDCV fusion. Depolarization of DRG neurons with a solution containing 60mM KCl triggered full fusion, kiss-and-run, and kiss-and-stay exocytosis with equal frequency. In contrast, field electrode stimulation primarily induced full fusion exocytosis. Finally, our results indicate that NPY can promote LDCV secretion. These results shed new light on the mechanism of NPY action during modulation of DRG neuron activity, an important pathway in the treatment of chronic pain.


Assuntos
Exocitose , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células Cultivadas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA