Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305253

RESUMO

Infections associated with medical implants due to bacterial adhesion and biofilm formation are a serious problem, leading to acute health risks to patients by compromising their immune system. Therefore, suppressing biofilm formation on biomedical implants is a challenging task, especially for overcoming the drug resistance of bacterial biofilms. Herein, a synergistic efficient surface coating method was developed to inhibit biofilm formation on a model medical implant by combining the antimicrobial property of trimethyl chitosan (TMC) with either 2D material graphene oxide (GO) or black phosphorus (BP) sheets using layer-by-layer (LbL) self-assembly. The multilayer coatings of TMC/GO and TMC/BP were optimized on the glass surface (a model implant) and characterized by using spectroscopic and microscopy techniques. Next, we investigated the antibiofilm formation properties of the TMC/GO and TMC/BP coatings on glass surfaces against both Gram-negative, Escherichia coli (E. coli), and Gram-positive, Bacillus subtilis (B. subtilis), bacteria. The antibiofilm formation was studied using crystal violet (CV) and live/dead assays. Both the live/dead and the CV assays confirmed that the TMC/2D material (2DM)-coated surfaces prevented biofilm formation much more effectively compared to the uncoated surfaces. Scanning electron microscopy analyses revealed that the bacteria were affected physically by incubating with TMC/2DM-coated surfaces due to membrane perturbation, thereby preventing cell attachment and biofilm formation. Further, BP composite coatings (TMC/BP) showed a much better ability to thwart biofilm formation than GO composite coatings (TMC/GO). Also, multilayer coatings showed superior cytocompatibility with human foreskin fibroblast (HFF). Our results demonstrate that the developed coatings TMC/2DMs could be potential candidates for thwarting biofilm formation on medical implants.

2.
ACS Appl Mater Interfaces ; 16(37): 48782-48791, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165729

RESUMO

Aqueous batteries are considered as promising alternative power sources due to their eco-friendly, cost-effective, and nonflammable attributes. Employing organic-based electrode materials offers further advantages toward building greener and sustainable systems, owing to their tunability and environmental friendliness. In order to enhance the energy and power densities, superconcentrated aqueous electrolytes, such as water-in-salt electrolytes (WiSE), have renewed the interest in aqueous batteries due to their enhanced stability and much wider electrochemical stability window (>1.23 V) compared with the traditional aqueous electrolytes. Here, we present a perylene diimide-based electrode material (PDI-Urea) as an appealing anode for aqueous potassium energy storage systems and investigate their electrochemical performance in three WiSE electrolytes, namely, 30 M potassium acetate, 40 M potassium formate and 30 M potassium bis(fluorosulfonyl)imide (KFSI). To explore the potential of PDI-Urea for potassium-based electrochemical energy systems, we fabricated full cell devices such as aqueous potassium dual-ion battery (APDIB) and aqueous K-ion battery (AKIB) and studied their electrochemical properties with 30 M KFSI electrolyte. The full cell K-ion battery, using a PBA cathode, exhibited excellent electrochemical performance with good rate capability and impressive capacity retention of 91% upon 1000 cycles. Further, the reaction mechanism of the electrodes is systematically analyzed using ex-situ studies.

3.
Nanoscale ; 15(37): 15219-15229, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37671639

RESUMO

Highly active and earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are of great significance for sustainable hydrogen generation through alkaline water electrolysis. Here, with an aim to enhance the bifunctional electrocatalytic activity of cobalt molybdate towards overall water splitting, we demonstrate a simple method involving the modulation of the cobalt to molybdenum ratio and creation of phase-modulated heterointerfaces. Samples with varying Co/Mo molar ratios are obtained via a microwave-assisted synthesis method using appropriate starting precursors. The synthesis conditions are modified to create a heterointerface involving multiple phases of cobalt molybdenum suboxides (CoO/CoMoO3/Co2Mo3O8) supported on Ni foam (NF). Detailed electrochemical studies reveal that modulating the composition and hence the interface can tweak the bifunctional electrocatalytic activity of the material for HER and OER and thus improve the overall water splitting efficiency with very high durability over 500 h. To further evaluate the practical applicability of the studied catalyst in water splitting, an alkaline electrolyser is fabricated with the optimized cobalt molybdenum suboxide material (CMO-1.25) as a bifunctional electrocatalyst. A current density of 220 mA cm-2 @1.6 V and 670 mA cm-2 @1.8 V was obtained, and the device showed very good long-term durability.

4.
ACS Appl Mater Interfaces ; 13(44): 52610-52619, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714616

RESUMO

Hybrid ion capacitors (HICs) are emerging as promising energy-storage devices exhibiting the advantages of both batteries and supercapacitors. However, the difference in the electrodes' specific capacities and rate capabilities makes it extremely challenging to achieve optimum mass balancing for a full-cell HIC device. Here, we demonstrate a method to predict well-performing mass ratios of electrodes for a Na-HIC by analyzing the capacities of anodes and cathodes as a function of the actual current densities experienced by the individual electrodes. We employ a simple design tool, a "Ragone Plot Simulator", to predict specific energy and specific power on Ragone plots and study the performance trend of devices with varying electrode mass ratios. The validation of the proposed method is done based on the experimental data obtained from several hybrid ion capacitor devices reported in the literature, which closely matches with the simulated Ragone plots. Further, we exemplify the validity of our calculations by comparing the simulated Ragone plot with that of a Na-HIC fabricated using in-house-made carbon. This unique approach presents a simple, generalized, yet never reported, method, which could be employed as a design tool to guide the selection of optimized HIC devices for the intended applications.

5.
Langmuir ; 37(5): 1954-1960, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33494607

RESUMO

Enhancement of fluorescence emission from single-photon quantum emitters on plasmonic nanomaterials using surface plasmon-coupled emission (SPCE) platforms has seen significant advancements. In parallel, there has also been an exponential rise in applications involving two-dimensional (2D) transition-metal dichalcogenides (TMDs) that exhibit unique exciton-plasmon interactions. Although both these Frontier research areas have impacted the development of sensor and sensing technologies, no study coalesces these two arenas for translational applications. In this work, we use thin WS2 nanosheets for realizing 1000-fold fluorescence enhancement on the SPCE platform. Structure-dependent fluorescence enhancement exhibited by WS2 provides new insight into the use of TMDs and exciton-plasmon coupling in SPCE substrates. Cellphone-based detection of the emitting dipole is another unique aspect of this work that presents a low-cost alternative in comparison with high-end detectors.

6.
Nanoscale Adv ; 3(19): 5676-5682, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36133269

RESUMO

We report circularly polarised emission, with helicity opposite to the optical excitation, from a van der Waals heterostructure (HS) consisting of a monolayer MoS2 and three-layer WS2. Selective excitation of the MoS2 layer confirms that this cross-polarized emission is due to the charge transfer from the WS2 layers to the MoS2 layer. We propose that the high levels of n-doping in the constituent layers due to sulphur vacancies and defects give rise to an enhanced transition rate of electrons from the k valley of WS2 to the k' valley of MoS2, which leads to the emission, counter polarized to the excitation. Simulations based on the rate equation model support this conclusion.

7.
ACS Appl Mater Interfaces ; 12(38): 42669-42677, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842723

RESUMO

Three-dimensional dendritic nanostructured carbon florets (NCFs) with tailored porosity are demonstrated as electrochemically versatile electrodes for both adsorptive and intercalative energy storage pathways. Achieved through a single-step template-driven approach, the NCFs exhibit turbostratic graphitic lamellae in a floral assembly leading to high specific surface area and multi-modal pore distribution (920 m2/g). The synergism in structural and chemical frameworks, along with open-ended morphology, enables bifunctionality of hard carbon NCFs as symmetric adsorptive electrodes for supercapacitors (SCs) and intercalation anodes for hybrid potassium-ion capacitors (KICs). Flexible, all-solid-state SCs through facile integration of NCF with the ionic-liquid-imbibed porous polymeric matrix achieve high-energy density (20 W h/kg) and power density (32.7 kW/kg) without compromising on mechanical flexibility and cyclability (94% after 20k cycles). Furthermore, NCF as an anode in a full-cell hybrid KIC (activated carbon as cathode) delivers excellent electrochemical performance with maximum energy and power densities of 57 W h/kg and 12.5 kW/kg, respectively, when cycled in a potential window of 1.0-4.0 V. The exceptional bifunctional performance of NCF highlights the possibility of utilizing such engineered nanocarbons for high-performance energy storage devices.

8.
ACS Nano ; 12(11): 11511-11519, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30362353

RESUMO

Phosphorene has attracted great interest in the rapidly emerging field of two-dimensional layered nanomaterials. Recent studies show promising electrocatalytic activity of few-layered phosphorene sheets toward the oxygen evolution reaction (OER). However, controllable synthesis of mono/few-layered phosphorene nanostructures with a large number of electrocatalytically active sites and exposed surface area is important to achieve significant enhancement in OER activity. Here, a novel strategy for controlled synthesis and in situ surface functionalization of phosphorene quantum dots (PQDs) using a single-step electrochemical exfoliation process is demonstrated. Phosphorene quantum dots functionalized with nitrogen-containing groups (FPQDs) exhibit efficient and stable electrocatalytic activity for OER with an overpotential of 1.66 V @ 10 mA cm-2, a low Tafel slope of 48 mV dec-1, and excellent stability. Further, we observe enhanced electron transfer kinetics for FPQDs toward the Fe2+/Fe3+ redox probe in comparison with pristine PQDs. The results demonstrate the promising potential of phosphorene as technologically viable OER electrodes for water-splitting devices.

9.
Nanoscale ; 10(20): 9516-9524, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29737994

RESUMO

Transition metal dichalcogenides (TMDs) exhibit unique properties and show potential for promising applications in energy conversion. Mono/few-layered TMDs have been widely explored as active electrocatalysts for the hydrogen evolution reaction (HER). A controlled synthesis of TMD nanostructures with unique structural and electronic properties, leading to highly active sites or higher conductivity, is essential to achieve enhanced HER activity. Here, we demonstrate a new approach to controllably synthesize highly catalytically active oxygen-incorporated 1T and 2H WS2 nanoclusters from oxygen deficient WO3 nanorods, following chemical exfoliation and ultrasonication processes, respectively. The as-synthesized 1T nanoclusters, with unique properties of tailored edge sites, and enhanced conductivity resulting from the metallic 1T phase and oxygen incorporation, have been identified as highly active and promising electrocatalysts for the HER, with a very low Tafel slope of 47 mV per decade and a low onset overpotential of 88 mV, along with exceptionally high exchange current density and very good stability. The study could be extended to other TMD materials for potential applications in energy conversion and storage.

10.
ACS Appl Mater Interfaces ; 9(23): 19417-19426, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27726323

RESUMO

Among several methodologies to improve the solution processing of graphene-based materials, noncovalent functionalization has been considered as the simplest and nondestructive method. Herein, we show that molecular self-assembly process can be used as a useful tool to exfoliate reduced graphene oxide (RGO), resulting in hybrid materials with improved physical properties. Upon interacting with a π-gelator, the dispersing ability of the RGO increased significantly in most of nonpolar and polar aprotic solvents when compared to the bare one. The amount of RGO dispersed was 1.7-1.8 mg mL-1 in solvents such as toluene, o-dichlorobenzene (ODCB) and tetrahydrofuran (THF). Morphological studies revealed that aggregation of π-gelator over RGO helps to exfoliate graphene layers to remain as individual sheets with higher surface area. Experimental studies revealed enhanced surface area (250 m2 g-1) and better conductivity (3.7 S m-1) of the hybrid materials with 30% of RGO content resulting in excellent electrochemical performance (specific capacitance of 181 F g-1) as electrodes for supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA