Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Transl Med ; 22(1): 80, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243294

RESUMO

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Humanos , Animais , Clostridium perfringens/genética , Galinhas/genética , RNA Ribossômico 16S/genética , Disbiose , Jejuno/química , Jejuno/patologia , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia
2.
JAMA Neurol ; 81(2): 194-195, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048122

RESUMO

This cohort study characterizes US trends in traumatic brain injury­related mortality by age, sex, and race and ethnicity.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Estados Unidos/epidemiologia , Etnicidade
3.
iScience ; 27(1): 108603, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38094852

RESUMO

Two major theories have been proposed to explain hippocampal function: cognitive map and the relational theories. They differ in their views on whether hippocampal neurons can process non-spatial information independently. However, the explanatory power of these theories remains unresolved. Additionally, more complex aspects of hippocampal neural population responses to non-spatial stimuli have not been investigated. Here, we used miniaturized fluorescence microscopy to investigate mouse CA1 responses to spatial, visual, auditory modalities, and combinations. We found that while neuronal populations primarily processed spatial information, they also showed strong sensitivity to non-spatial modalities independent of spatial inputs, exhibiting distinct neuronal dynamics and coding patterns. These results provide strong support for the relational theories.

4.
Front Physiol ; 14: 1204018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469559

RESUMO

Familial hypercholesterolemia (FH) is a globally underdiagnosed genetic condition associated with premature cardiovascular death. The genetic etiology data on Arab FH patients is scarce. Therefore, this study aimed to identify the genetic basis of FH in a Saudi family using whole exome sequencing (WES) and multidimensional bioinformatic analysis. Our WES findings revealed a rare heterozygous gain-of-function variant (R496W) in the exon 9 of the PCSK9 gene as a causal factor for FH in this family. This variant was absent in healthy relatives of the proband and 200 healthy normolipidemic controls from Saudi Arabia. Furthermore, this variant has not been previously reported in various regional and global population genomic variant databases. Interestingly, this variant is classified as "likely pathogenic" (PP5) based on the variant interpretation guidelines of the American College of Medical Genetics (ACMG). Computational functional characterization suggested that this variant could destabilize the native PCSK9 protein and alter its secondary and tertiary structural features. In addition, this variant was predicted to negatively influence its ligand-binding ability with LDLR and Alirocumab antibody molecules. This rare PCSK9 (R496W) variant is likely to expand our understanding of the genetic basis of FH in Saudi Arabia. This study also provides computational structural insights into the genotype-protein phenotype relationship of PCSK9 pathogenic variants and contributes to the development of personalized medicine for FH patients in the future.

5.
Front Genet ; 14: 1131182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180975

RESUMO

Paget's disease of bone (PDB) is the second most prevalent metabolic bone disorder worldwide, with a prevalence rate of 1.5%-8.3%. It is characterized by localized areas of accelerated, disorganized, and excessive bone production and turnover. Typically, PDB develops in the later stages of life, particularly in the late 50s, and affects men more frequently than women. PDB is a complex disease influenced by both genetic and environmental factors. PDB has a complex genetic basis involving multiple genes, with SQSTM1 being the gene most frequently associated with its development. Mutations affecting the UBA domain of SQSTM1 have been detected in both familial and sporadic PDB cases, and these mutations are often associated with severe clinical expression. Germline mutations in other genes such as TNFRSF11A, ZNF687 and PFN1, have also been associated with the development of the disease. Genetic association studies have also uncovered several PDB predisposing risk genes contributing to the disease pathology and severity. Epigenetic modifications of genes involved in bone remodelling and regulation, including RANKL, OPG, HDAC2, DNMT1, and SQSTM1, have been implicated in the development and progression of Paget's disease of bone, providing insight into the molecular basis of the disease and potential targets for therapeutic intervention. Although PDB has a tendency to cluster within families, the variable severity of the disease across family members, coupled with decreasing incidence rates, indicates that environmental factors may also play a role in the pathophysiology of PDB. The precise nature of these environmental triggers and how they interact with genetic determinants remain poorly understood. Fortunately, majority of PDB patients can achieve long-term remission with an intravenous infusion of aminobisphosphonates, such as zoledronic acid. In this review, we discuss aspects like clinical characteristics, genetic foundation, and latest updates in PDB research.

6.
Front Med (Lausanne) ; 10: 1164305, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215724

RESUMO

Background: Inflammatory bowel disease (IBD) is a chronic autoimmune disorder characterized by severe inflammation and mucosal destruction of the intestine. The specific, complex molecular processes underlying IBD pathogenesis are not well understood. Therefore, this study is aimed at identifying and uncovering the role of key genetic factors in IBD. Method: The whole exome sequences (WESs) of three consanguineous Saudi families having many siblings with IBD were analyzed to discover the causal genetic defect. Then, we used a combination of artificial intelligence approaches, such as functional enrichment analysis using immune pathways and a set of computational functional validation tools for gene expression, immune cell expression analyses, phenotype aggregation, and the system biology of innate immunity, to highlight potential IBD genes that play an important role in its pathobiology. Results: Our findings have shown a causal group of extremely rare variants in the LILRB1 (Q53L, Y99N, W351G, D365A, and Q376H) and PRSS3 (F4L and V25I) genes in IBD-affected siblings. Findings from amino acids in conserved domains, tertiary-level structural deviations, and stability analysis have confirmed that these variants have a negative impact on structural features in the corresponding proteins. Intensive computational structural analysis shows that both genes have very high expression in the gastrointestinal tract and immune organs and are involved in a variety of innate immune system pathways. Since the innate immune system detects microbial infections, any defect in this system could lead to immune functional impairment contributing to IBD. Conclusion: The present study proposes a novel strategy for unraveling the complex genetic architecture of IBD by integrating WES data of familial cases, with computational analysis.

7.
Bioinform Biol Insights ; 17: 11779322231166214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153842

RESUMO

The Parkinson disease (PD) is the second most common neurodegenerative disorder affecting the central nervous system and motor functions. The biological complexity of PD is yet to reveal potential targets for intervention or to slow the disease severity. Therefore, this study aimed to compare the fidelity of blood to substantia nigra (SN) tissue gene expression from PD patients to provide a systematic approach to predict role of the key genes of PD pathobiology. Differentially expressed genes (DEGs) from multiple microarray data sets of PD blood and SN tissue from GEO database are identified. Using the theoretical network approach and variety of bioinformatic tools, we prioritized the key genes from DEGs. A total of 540 and 1024 DEGs were identified in blood and SN tissue samples, respectively. Functional pathways closely related to PD such as ERK1 and ERK2 cascades, mitogen-activated protein kinase (MAPK) signaling, Wnt, nuclear factor-κB (NF-κB), and PI3K-Akt signaling were observed by enrichment analysis. Expression patterns of 13 DEGs were similar in both blood and SN tissues. Comprehensive network topological analysis and gene regulatory networks identified additional 10 DEGs functionally connected with molecular mechanisms of PD through the mammalian target of rapamycin (mTOR), autophagy, and AMP-activated protein kinase (AMPK) signaling pathways. Potential drug molecules were identified by chemical-protein network and drug prediction analysis. These potential candidates can be further validated in vitro/in vivo to be used as biomarkers and/or novel drug targets for the PD pathology and/or to arrest or delay the neurodegeneration over the years, respectively.

8.
Biomed Pharmacother ; 163: 114820, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37141736

RESUMO

The present study evaluated the efficacy of nano-formulated water-soluble kaempferol and combretastatin alone and combined against the native kaempferol and combretastatin on angiogenesis. The solvent evaporation method was used to synthesize the nano-formulated water-soluble kaempferol and combretastatin and characterized using various analyses such as dynamic light scattering (DLS) and Fourier-transform infrared (FT-IR) spectroscopy.The anti-angiogenic activity of native, nano-formulated water-soluble kaempferol and combretastatin was investigated by cell viability on HUVEC and A498 cell lines, while chick chorioallantoic membrane (CAM) assay was utilized to assess morphometric and histopathological changes, and mRNA expressions of VEGF-A and FGF2 using qRT-PCR. MTT assay results revealed that the combination of nano-formulated water-soluble kaempferol and combretastatin significantly reduced the cell viability compared to control, individual treatments of native, nano-formulated water-soluble kaempferol, and combretastatin. Morphometric analysis of CAM showed that treatment with nano-formulated water-soluble kaempferol and combretastatin caused a substantial decrease in density, vessel network, branch points, and nets of CAM blood vessels. The histopathological results of CAM showed the irregular shape of blood vessels at the thin stratum of chronic endoderm, and blood capillaries were diminished compared to the control. In addition, the mRNA expression levels of VEGF-A and FGF2 were significantly decreased compared with native forms. Therefore, the findings of this study indicate that nano-formulated water-soluble combretastatin and kaempferol suppress angiogenesis by preventing the activation of endothelial cells and suppressing factors of angiogenesis. Moreover, a combination of nano-formulated water-soluble kaempferol and combretastatin worked much better than individual treatments.


Assuntos
Membrana Corioalantoide , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana , Fator A de Crescimento do Endotélio Vascular/metabolismo , Água/farmacologia , Quempferóis/farmacologia , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Galinhas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neovascularização Fisiológica
9.
Front Chem ; 11: 1137444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970406

RESUMO

Introduction: PIM kinases are targets for therapeutic intervention since they are associated with a number of malignancies by boosting cell survival and proliferation. Over the past years, the rate of new PIM inhibitors discovery has increased significantly, however, new generation of potent molecules with the right pharmacologic profiles were in demand that can probably lead to the development of Pim kinase inhibitors that are effective against human cancer. Method: In the current study, a machine learning and structure based approaches were used to generate novel and effective chemical therapeutics for PIM-1 kinase. Four different machine learning methods, namely, support vector machine, random forest, k-nearest neighbour and XGBoost have been used for the development of models. Total, 54 Descriptors have been selected using the Boruta method. Results: SVM, Random Forest and XGBoost shows better performance as compared to k-NN. An ensemble approach was implemented and, finally, four potential molecules (CHEMBL303779, CHEMBL690270, MHC07198, and CHEMBL748285) were found to be effective for the modulation of PIM-1 activity. Molecular docking and molecular dynamic simulation corroborated the potentiality of the selected molecules. The molecular dynamics (MD) simulation study indicated the stability between protein and ligands. Discussion: Our findings suggest that the selected models are robust and can be potentially useful for facilitating the discovery against PIM kinase.

10.
Gene ; 851: 146909, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36162527

RESUMO

BACKGROUND: Tetralogy of Fallot (TOF) is a rare, complex congenital heart defect caused by genetic and environmental interactions that results in abnormal heart development during the early stages of pregnancy. Genetic basis of TOF in Saudi populations is not yet studied. Therefore, the objective of this study is to screen for the molecular defects causing TOF in Saudi patients. METHODS: A family with non-syndromic TOF was recruited from the Western region of Saudi Arabia. Whole exome sequencing (WES) was performed on the proband and her parents. The identified candidate variant was verified by sanger sequencing. Also, different computational biology tools were used to figure out how candidate variants affect the structure and function of candidate protein involved in TOF. RESULTS: A novel heterozygous de novo mutation in LRP1 (p. G3311D) gene was identified in the index case. Also, this variant was absent in the in-house exome sequencing data of 80 healthy Saudi individuals. This variant was predicted to be likely pathogenic, as it negatively affects the biophysical chemical properties and stability of the protein. Furthermore, functional biology data from knock out mouse models confirms that molecular defects in LRP1 gene leads to cardiac defects and lethality. This variant was not previously reported in both Arab and global population genetic databases. CONCLUSION: The findings in this study postulate that the LRP1 variant has a role in TOF pathogenesis and facilitate accurate diagnosis as well as the understanding of underlying molecular mechanisms and pathophysiology of the disease.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Tetralogia de Fallot , Animais , Feminino , Camundongos , Exoma/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Linhagem , Arábia Saudita , Tetralogia de Fallot/genética , Tetralogia de Fallot/patologia , Humanos
11.
Panminerva Med ; 65(4): 479-490, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35274909

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a globally underdiagnosed inherited metabolic disorder. Owing to limited published data from Arab world, this study was conducted with the aim of identifying the genetic and molecular basis of FH in highly consanguineous Saudi population. METHODS: We performed clinical screening, biochemical profiling, whole exome sequencing and variant segregation analysis of two Saudi FH families. Additionally, 500 normolipic individuals were screened to ensure the absence of FH variant in general Saudi population. Functional characterization of FH variants on secondary structure characteristics of RNA and protein molecules was performed using different bioinformatics modelling approaches. RESULTS: WES analysis identified two independent rare LDLR gene stop gain variants (p.C231* and p.R744*) consistent to the clinical presentation of FH patients from two different families. RNAfold analysis has shown that both variants were predicted to disturb the free energy dynamics of LDLR mRNA molecule and destabilize its folding pattern and function. PSIPRED based structural modelling analysis has suggested that both variants bring drastic changes disturbing the secondary structural elements of LDLR molecule. The p.C231* and p.R744* variants are responsible for partial or no protein product, thus they are class 1 variants causing loss of function (LoF) LDLR variants. CONCLUSIONS: This study highlights the effectiveness of the WES, sanger sequencing, and computational analysis in expanding FH variant spectrum in culturally distinct populations like Saudi Arabia. Genetic testing of FH patients is very essential in better clinical diagnosis, screening, treatment, and management and prevention of cardiovascular disease burden in the society.


Assuntos
Doenças Cardiovasculares , Hiperlipoproteinemia Tipo II , Humanos , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/epidemiologia , Mutação , Fenótipo , Receptores de LDL/genética , Receptores de LDL/química , Receptores de LDL/metabolismo , Arábia Saudita
12.
Front Mol Biosci ; 9: 1051511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504721

RESUMO

Background: Alpha-1 antitrypsin deficiency (A1ATD) is a progressive lung disease caused by inherited pathogenic variants in the SERPINA1 gene. However, their actual role in maintenance of structural and functional characteristics of the corresponding α-1 anti-trypsin (A1AT) protein is not well characterized. Methods: The A1ATD causative SERPINA1 missense variants were initially collected from variant databases, and they were filtered based on their pathogenicity potential. Then, the tertiary protein models were constructed and the impact of individual variants on secondary structure, stability, protein-protein interactions, and molecular dynamic (MD) features of the A1AT protein was studied using diverse computational methods. Results: We identified that A1ATD linked SERPINA1 missense variants like F76S, S77F, L278P, E288V, G216C, and H358R are highly deleterious as per the consensual prediction scores of SIFT, PolyPhen, FATHMM, M-CAP and REVEL computational methods. All these variants were predicted to alter free energy dynamics and destabilize the A1AT protein. These variants were seen to cause minor structural drifts at residue level (RMSD = <2Å) of the protein. Interestingly, S77F and L278P variants subtly alter the size of secondary structural elements like beta pleated sheets and loops. The residue level fluctuations at 100 ns simulation confirm the highly damaging structural consequences of all the six missense variants on the conformation dynamics of the A1AT protein. Moreover, these variants were also predicted to cause functional deformities by negatively impacting the binding energy of A1AT protein with NE ligand molecule. Conclusion: This study adds a new computational biology dimension to interpret the genotype-protein phenotype relationship between SERPINA1 pathogenic variants with its structural plasticity and functional behavior with NE ligand molecule contributing to the Alpha-1-antitrypsin deficiency. Our results support that A1ATD complications correlates with the conformational flexibility and its propensity of A1AT protein polymerization when misfolded.

13.
Front Genet ; 13: 1066118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468011

RESUMO

Background: Prostate cancer (PC) is a fatally aggressive urogenital cancer killing millions of men, globally. Thus, this study aims to identify key miRNAs, target genes, and drug targets associated with prostate cancer metastasis. Methods: The miRNA and mRNA expression datasets of 148 prostate tissue biopsies (39 tumours and 109 normal tissues), were analysed by differential gene expression analysis, protein interactome mapping, biological pathway analysis, miRNA-mRNA networking, drug target analysis, and survival curve analysis. Results: The dysregulated expression of 53 miRNAs and their 250 target genes involved in Hedgehog, ErbB, and cAMP signalling pathways connected to cell growth, migration, and proliferation of prostate cancer cells was detected. The subsequent miRNA-mRNA network and expression status analysis have helped us in narrowing down their number to 3 hub miRNAs (hsa-miR-455-3p, hsa-miR-548c-3p, and hsa-miR-582-5p) and 9 hub genes (NFIB, DICER1, GSK3B, DCAF7, FGFR1OP, ABHD2, NACC2, NR3C1, and FGF2). Further investigations with different systems biology methods have prioritized NR3C1, ABHD2, and GSK3B as potential genes involved in prostate cancer metastasis owing to their high mutation load and expression status. Interestingly, down regulation of NR3C1 seems to improve the prostate cancer patient survival rate beyond 150 months. The NR3C1, ABHD2, and GSK3B genes are predicted to be targeted by hsa-miR-582-5p, besides some antibodies, PROTACs and inhibitory molecules. Conclusion: This study identified key miRNAs (miR-548c-3p and miR-582-5p) and target genes (NR3C1, ABHD2, and GSK3B) as potential biomarkers for metastatic prostate cancers from large-scale gene expression data using systems biology approaches.

14.
PLoS One ; 17(10): e0271262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264868

RESUMO

Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.


Assuntos
Asma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Biologia de Sistemas , Redes Reguladoras de Genes , Interleucina-17/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Asma/genética , Biomarcadores
15.
PLoS One ; 17(10): e0274629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194576

RESUMO

Chronic obstructive pulmonary disease (COPD) is a multifactorial progressive airflow obstruction in the lungs, accounting for high morbidity and mortality across the world. This study aims to identify potential COPD blood-based biomarkers by analyzing the dysregulated gene expression patterns in blood and lung tissues with the help of robust computational approaches. The microarray gene expression datasets from blood (136 COPD and 6 controls) and lung tissues (16 COPD and 19 controls) were analyzed to detect shared differentially expressed genes (DEGs). Then these DEGs were used to construct COPD protein network-clusters and functionally enrich them against gene ontology annotation terms. The hub genes in the COPD network clusters were then queried in GWAS catalog and in several cancer expression databases to explore their pathogenic roles in lung cancers. The comparison of blood and lung tissue datasets revealed 63 shared DEGs. Of these DEGs, 12 COPD hub gene-network clusters (SREK1, TMEM67, IRAK2, MECOM, ASB4, C1QTNF2, CDC42BPA, DPF3, DET1, CCDC74B, KHK, and DDX3Y) connected to dysregulations of protein degradation, inflammatory cytokine production, airway remodeling, and immune cell activity were prioritized with the help of protein interactome and functional enrichment analysis. Interestingly, IRAK2 and MECOM hub genes from these COPD network clusters are known for their involvement in different pulmonary diseases. Additional COPD hub genes like SREK1, TMEM67, CDC42BPA, DPF3, and ASB4 were identified as prognostic markers in lung cancer, which is reported in 1% of COPD patients. This study identified 12 gene network- clusters as potential blood based genetic biomarkers for COPD diagnosis and prognosis.


Assuntos
Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Biomarcadores , Biologia Computacional , Citocinas/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Antígenos de Histocompatibilidade Menor , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Transcriptoma
16.
Ther Adv Chronic Dis ; 13: 20406223221116798, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968218

RESUMO

Interleukin-2 receptor alpha (IL2RA) defect (OMIM- # 606367) is an immune disease where affected patients are vulnerable to developing recurrent microbial infections in addition to lymphadenopathy and dermatological manifestations. This condition is known to be caused by pathogenic variants in the IL2RA gene, which are inherited in an autosomal recessive fashion. In this case report, we present a patient with IL2RA defect from Saudi Arabia who presented with chronic diarrhea, poor weight gain, mild villous atrophy, malnutrition, hepatomegaly, nonspecific inflammation, and an eczematous skin rash. His genetic analysis revealed a novel, homozygous, and likely pathogenic variant, that is, c.504 C>A (Cys168Ter), located in the exon 4of the IL2RA gene, which was inherited from his parents in an autosomal recessive mode of inheritance. This variant produces a 272-amino-acid shorter IL2RA protein chain, which most likely becomes degraded in the cytosol. Thus, we assume that the c.504 C>A is a null allele that abolishes the synthesis of IL2RA, malforms the IL-2 receptor complex, and eventually causes immunodeficiency manifestations. To our knowledge, this is the first time a person with IL2RA defect has shown signs of granulomatous hepatitis on a liver biopsy.

17.
Saudi J Biol Sci ; 29(5): 3287-3299, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844366

RESUMO

Familial hypercholesterolemia (FH) is a monogenic lipid disorder which promotes atherosclerosis and cardiovascular diseases. Owing to the lack of sufficient published information, this study aims to identify the potential genetic biomarkers for FH by studying the global gene expression profile of blood cells. The microarray expression data of FH patients and controls was analyzed by different computational biology methods like differential expression analysis, protein network mapping, hub gene identification, functional enrichment of biological pathways, and immune cell restriction analysis. Our results showed the dysregulated expression of 115 genes connected to lipid homeostasis, immune responses, cell adhesion molecules, canonical Wnt signaling, mucin type O-glycan biosynthesis pathways in FH patients. The findings from expanded protein interaction network construction with known FH genes and subsequent Gene Ontology (GO) annotations have also supported the above findings, in addition to identifying the involvement of dysregulated thyroid hormone and ErbB signaling pathways in FH patients. The genes like CSNK1A1, JAK3, PLCG2, RALA, and ZEB2 were found to be enriched under all GO annotation categories. The subsequent phenotype ontology results have revealed JAK3I, PLCG2, and ZEB2 as key hub genes contributing to the inflammation underlying cardiovascular and immune response related phenotypes. Immune cell restriction findings show that above three genes are highly expressed by T-follicular helper CD4+ T cells, naïve B cells, and monocytes, respectively. These findings not only provide a theoretical basis to understand the role of immune dysregulations underlying the atherosclerosis among FH patients but may also pave the way to develop genomic medicine for cardiovascular diseases.

18.
Front Pediatr ; 10: 895298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783297

RESUMO

Background: Autoimmune diseases (AIDs) share a common molecular etiology and often present overlapping clinical presentations. Thus, this study aims to explore the complex molecular basis of AID by whole exome sequencing and computational biology analysis. Methods: Molecular screening of the consanguineous AID family and the computational biology characterization of the potential variants were performed. The potential variants were searched against the exome data of 100 healthy individuals and 30 celiac disease patients. Result: A complex inheritance pattern of PAK2 (V43A), TAP2 (F468Y), and PLCL1 (V473I) genetic variants was observed in the three probands of the AID family. The PAK2 variant (V43A) is a novel one, but TAP2 (F468Y) and PLCL1 (V473I) variants are extremely rare in local Arab (SGHP and GME) and global (gnomAD) databases. All these variants were localized in functional domains, except for the PAK2 variant (V43A) and were predicted to alter the structural (secondary structure elements, folding, active site confirmation, stability, and solvent accessibility) and functional (gene expression) features. Therefore, it is reasonable to postulate that the dysregulation of PAK2, TAP2, and PLCL1 genes is likely to elicit autoimmune reactions by altering antigen processing and presentation, T cell receptor signaling, and immunodeficiency pathways. Conclusion: Our findings highlight the importance of exploring the alternate inheritance patterns in families presenting complex autoimmune diseases, where classical genetic models often fail to explain their molecular basis. These findings may have potential implications for developing personalized therapies for complex disease patients.

19.
Front Pediatr ; 10: 895074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692981

RESUMO

Background: Molecular diagnosis of early onset inflammatory bowel disease (IBD) is very important for adopting suitable treatment strategies. Owing to the sparse data available, this study aims to identify the molecular basis of early onset IBD in Arab patients. Methods: A consanguineous Arab family with monozygotic twins presenting early onset IBD was screened by whole exome sequencing (WES). The variants functional characterization was performed by a series of computational biology methods. The IBD variants were further screened in in-house whole exome data of 100 Saudi cohorts ensure their rare prevalence in the population. Results: Genetic screening has identified the digenic autosomal recessive mode of inheritance of ITGAV (G58V) and FN1 (G313V) variants in IBD twins with early onset IBD. Findings from pathogenicity predictions, stability and molecular dynamics have confirmed the deleterious nature of both variants on structural features of the corresponding proteins. Functional biology data suggested that both genes show abundant expression in gastrointestinal tract and immune organs, involved in immune cell restriction, regulation of different immune related pathways. Data from knockout mouse models for ITGAV gene has revealed that the dysregulated expression of this gene impacts intestinal immune homeostasis. The defective ITGAV and FN1 involved in integrin pathway, are likely to induce intestinal inflammation by disturbing immune homeostasis. Conclusions: Our findings provide novel insights into the molecular etiology of pediatric onset IBD and may likely pave way in developing genomic medicine.

20.
Minerva Med ; 113(3): 532-541, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35266657

RESUMO

BACKGROUND: Obesity is associated with the quantitative changes in miRNAs and their target genes. However, the molecular basis of their dysregulation and expression status correlations is incompletely understood. Therefore, this study aims to examine the shared differentially expressed miRNAs and their target genes between blood and adipose tissues of obese individuals to identify potential blood-based biomarkers. METHODS: In this study, 3 gene expression datasets (two mRNA and one miRNA), generated from blood and adipose tissues of 68 obese and 39 lean individuals, were analyzed by a series of robust computational concepts, like protein interactome mapping, functional enrichment of biological pathways and construction of miRNA-mRNA and transcription factor gene networks. RESULTS: The comparison of blood versus tissue datasets has revealed the shared differential expression of 210 genes (59.5% upregulated) involved in lipid metabolism and inflammatory reactions. The blood miRNA (GSE25470) analysis has identified 79 differentially expressed miRNAs (71% downregulated). The miRNA-target gene scan identified regulation of 30 shared genes by 22miRNAs. The gene network analysis has identified the inverse expression correlation between 8 target genes (TP53, DYSF, GAB2, GFRA2, NACC2, FAM53C, JNK and GAB2) and 3 key miRNAs (hsa-mir-940, hsa-mir-765, hsa-mir-612), which are further regulated by 24 key transcription factors. CONCLUSIONS: This study identifies potential obesity related blood biomarkers from large-scale gene expression data by computational miRNA-target gene interactome and transcription factor network construction methods.


Assuntos
Redes Reguladoras de Genes , MicroRNAs , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Obesidade/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA