Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncol Rep ; 51(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131223

RESUMO

Patients with end­stage metastatic disease have limited treatment options and those diagnosed with triple negative breast cancer (Her2, Estrogen receptor, Progesterone receptor) have a poor prognosis. Using a triple negative mammary tumor model selected for brain metastasis (4T1Br4) in the mouse, treatment options that may increase survival when therapeutics are applied at post­metastasis were assessed. Anti­parasitic benzimidazoles (BZs) destabilize microtubules, inhibit metabolic pathways, reduce cell proliferation, and induce apoptosis in tumor cells. Co­administration of two BZs was selected, oxfendazole (OFZ) and parbendazole (PBZ), shown to overcome resistance development in anthelmintic effects by imposing metabolic delay to assess if multiple BZ approach is also suitable to enhance anticancer effects. It has been previously reported that treatment of mammary tumor­bearing mice at an early stage with chitin microparticles (CMPs) decreased tumor growth and metastases by enhancing both innate M1 macrophage and TH1 adaptive immune response. Oral administration of CMPs was previously revealed to affect the gut in intestinal inflammation. A combination BZ (OFZ/PBZ) and CMP treatment was tested to target tumor development and metastasis and effects were compared in response to monotherapies of the same compounds or to untreated mice. The results demonstrated increased survival, decreased tumor cell proliferation, decreased metastasis in lungs and brain, increased levels of fecal SCFAs butyric, acetic, propionic and valeric acids with increased butyric and propionic acid levels in brain biopsies in combination treated compared with untreated mice. At the primary tumor, SCFA receptor FFAR2 expression was increased in combination treatment compared with untreated mice, suggestive of a non­invasive cancer phenotype. The superior cytotoxic effects of OFZ/PBZ were confirmed as opposed to single treatment with OFZ or PBZ using 3D spheroids generated from a human breast cancer cell line, MDA­MB­468. These data are compelling for treatment option possibility even at late stages of metastasized breast cancer.


Assuntos
Anti-Helmínticos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/metabolismo , Macrófagos/metabolismo , Linhagem Celular Tumoral
2.
J Chem Inf Model ; 62(20): 4955-4962, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-35981320

RESUMO

The peptidoglycan (PG) layer is a vital component of the bacterial cell wall that protects the cell from rupturing due to internal pressure. Its ubiquity across the bacterial kingdom but not animals has made it the target of drug discovery efforts. The PG layer composed of cross-linked PG strands is porous enough to allow the diffusion of molecules through the PG mesh and into the cell. The lack of an accurate atomistic model of the PG mesh has limited the computational investigations of drug diffusion in Gram-positive bacteria, which lack the outer membrane but consist of a much thicker PG layer compared to Gram-negative bacteria. In this work, we built an atomistic model of the Staphylococcus aureus PG layer architecture with horizontally aligned PG strands and performed molecular dynamics simulations of the diffusion of curcumin molecules through the PG mesh. An accurate model of the Gram-positive bacterial cell wall may aid in developing novel antibiotics to tackle the threat posed by antibiotic resistance.


Assuntos
Curcumina , Peptidoglicano , Peptidoglicano/metabolismo , Staphylococcus aureus/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Positivas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA