Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7971): 749-754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380782

RESUMO

Proton transfer is one of the most fundamental events in aqueous-phase chemistry and an emblematic case of coupled ultrafast electronic and structural dynamics1,2. Disentangling electronic and nuclear dynamics on the femtosecond timescales remains a formidable challenge, especially in the liquid phase, the natural environment of biochemical processes. Here we exploit the unique features of table-top water-window X-ray absorption spectroscopy3-6 to reveal femtosecond proton-transfer dynamics in ionized urea dimers in aqueous solution. Harnessing the element specificity and the site selectivity of X-ray absorption spectroscopy with the aid of ab initio quantum-mechanical and molecular-mechanics calculations, we show how, in addition to the proton transfer, the subsequent rearrangement of the urea dimer and the associated change of the electronic structure can be identified with site selectivity. These results establish the considerable potential of flat-jet, table-top X-ray absorption spectroscopy7,8 in elucidating solution-phase ultrafast dynamics in biomolecular systems.


Assuntos
Prótons , Ureia , Ureia/química , Soluções/química , Água/química , Espectroscopia por Absorção de Raios X , Teoria Quântica , Fatores de Tempo
2.
Struct Dyn ; 8(3): 034102, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026923

RESUMO

Investigating the early dynamics of chemical systems following ionization is essential for our understanding of radiation damage. However, experimental as well as theoretical investigations are very challenging due to the complex nature of these processes. Time-resolved x-ray absorption spectroscopy on a femtosecond timescale, in combination with appropriate simulations, is able to provide crucial insights into the ultrafast processes that occur upon ionization due to its element-specific probing nature. In this theoretical study, we investigate the ultrafast dynamics of valence-ionized states of urea and its dimer employing Tully's fewest switches surface hopping approach using Koopmans' theorem to describe the ionized system. We demonstrate that following valence ionization through a pump pulse, the time-resolved x-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges reveal rich insights into the dynamics. Excited states of the ionized system give rise to time-delayed blueshifts in the x-ray absorption spectra as a result of electronic relaxation dynamics through nonadiabatic transitions. Moreover, our statistical analysis reveals specific structural dynamics in the molecule that induce time-dependent changes in the spectra. For the urea monomer, we elucidate the possibility to trace effects of specific molecular vibrations in the time-resolved x-ray absorption spectra. For the urea dimer, where ionization triggers a proton transfer reaction, we show how the x-ray absorption spectra can reveal specific details on the progress of proton transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA