Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 14(1): 5988, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472291

RESUMO

Pulmonary metastasectomy (PM) is consensually performed in a parenchyma-sparing manner to preserve functionally healthy lung tissue. However, this may increase the risk of local recurrence at the surgical margin. Laser assisted pulmonary metastasectomy (LPM) is a relatively recent innovation that is especially useful to resect multiple metastatic pulmonary nodules. In this study we investigated the rate of local recurrence after LPM and evaluated the influence of various clinical and pathological factors on local recurrence. Retrospectively, a total of 280 metastatic nodules with different histopathological entities were studied LPM from 2010 till 2018. All nodules were resected via diode-pumped neodymium: yttrium-aluminum-garnet (Nd:YAG) 1,318 nm laser maintaining a safety margin of 5 mm. Patients included were observed on average for 44 ± 17 months postoperatively. Local recurrence at the surgical margin following LPM was found in 9 nodules out of 280 nodules (3.21%). Local recurrence at the surgical margin occurred after 20 ± 8.5 months post operation. Incomplete resection (p = < 0.01) and size of the nodule (p = < 0.01) were associated with significantly increased risk of local recurrence at the surgical margin. Histology of the primary disease showed no impact on local recurrence. Three and five-year survival rates were 84% and 49% respectively. Following LPM, the rate of local recurrence is low. This is influenced by the size of the metastatic nodules and completeness of the resection. Obtaining a safety margin of 5 mm seems to be sufficient, larger nodules require larger safety margins.


Assuntos
Neoplasias Pulmonares , Metastasectomia , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Margens de Excisão , Lasers , Recidiva Local de Neoplasia/cirurgia
2.
Cell Signal ; 113: 110958, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935340

RESUMO

Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.


Assuntos
Neoplasias da Mama , Células Epiteliais , Feminino , Humanos , Animais , Camundongos , Células Epiteliais/metabolismo , Diferenciação Celular , Neoplasias da Mama/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Microambiente Tumoral
3.
bioRxiv ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425903

RESUMO

Tissues comprise ordered arrangements of cells that can be surprisingly disordered in their details. How the properties of single cells and their microenvironment contribute to the balance between order and disorder at the tissue-scale remains poorly understood. Here, we address this question using the self-organization of human mammary organoids as a model. We find that organoids behave like a dynamic structural ensemble at the steady state. We apply a maximum entropy formalism to derive the ensemble distribution from three measurable parameters - the degeneracy of structural states, interfacial energy, and tissue activity (the energy associated with positional fluctuations). We link these parameters with the molecular and microenvironmental factors that control them to precisely engineer the ensemble across multiple conditions. Our analysis reveals that the entropy associated with structural degeneracy sets a theoretical limit to tissue order and provides new insight for tissue engineering, development, and our understanding of disease progression.

4.
Nat Genet ; 55(4): 595-606, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914836

RESUMO

Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Feminino , Humanos , Mutação , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Glândulas Mamárias Humanas/metabolismo , Carcinogênese/patologia , Células Estromais/patologia
5.
Clin Sci (Lond) ; 136(13): 1025-1043, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35786748

RESUMO

There is a plethora of recognized risk factors for breast cancer (BC) with poorly understood or speculative biological mechanisms. The lack of prevention options highlights the importance of understanding the mechanistic basis of cancer susceptibility and finding new targets for breast cancer prevention. Until now, we have understood risk and cancer susceptibility primarily through the application of epidemiology and assessing outcomes in large human cohorts. Relative risks are assigned to various human behaviors and conditions, but in general the associations are weak and there is little understanding of mechanism. Aging is by far the greatest risk factor for BC, and there are specific forms of inherited genetic risk that are well-understood to cause BC. We propose that bringing focus to the biology underlying these forms of risk will illuminate biological mechanisms of BC susceptibility.


Assuntos
Envelhecimento , Neoplasias , Humanos , Fatores de Risco
6.
Cancer Prev Res (Phila) ; 14(8): 779-794, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140348

RESUMO

A robust breast cancer prevention strategy requires risk assessment biomarkers for early detection. We show that expression of ELF5, a transcription factor critical for normal mammary development, is downregulated in mammary luminal epithelia with age. DNA methylation of the ELF5 promoter is negatively correlated with expression in an age-dependent manner. Both ELF5 methylation and gene expression were used to build biological clocks to estimate chronological ages of mammary epithelia. ELF5 clock-based estimates of biological age in luminal epithelia from average-risk women were within three years of chronological age. Biological ages of breast epithelia from BRCA1 or BRCA2 mutation carriers, who were high risk for developing breast cancer, suggested they were accelerated by two decades relative to chronological age. The ELF5 DNA methylation clock had better performance at predicting biological age in luminal epithelial cells as compared with two other epigenetic clocks based on whole tissues. We propose that the changes in ELF5 expression or ELF5-proximal DNA methylation in luminal epithelia are emergent properties of at-risk breast tissue and constitute breast-specific biological clocks. PREVENTION RELEVANCE: ELF5 expression or DNA methylation level at the ELF5 promoter region can be used as breast-specific biological clocks to identify women at higher than average risk of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Mama/metabolismo , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Adulto , Biomarcadores Tumorais/genética , Mama/patologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Detecção Precoce de Câncer/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
7.
Nat Aging ; 1(9): 838-849, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35187501

RESUMO

During aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Feminino , Envelhecimento/genética , Mama/patologia , Mutação em Linhagem Germinativa/genética , Neoplasias da Mama/genética , Proteína BRCA1/genética , Proteína BRCA2/genética
8.
Front Cell Dev Biol ; 7: 174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555644

RESUMO

Preventing breast cancer before it is able to form is an ideal way to stop breast cancer. However, there are limited existing options for prevention of breast cancer. Changes in the breast tissue resulting from the aging process contribute to breast cancer susceptibility and progression and may therefore provide promising targets for prevention. Here, we describe new potential targets, immortalization and inflammaging, that may be useful for prevention of age-related breast cancers. We also summarize existing studies of warfarin and metformin, current drugs used for non-cancerous diseases, that also may be repurposed for breast cancer prevention.

9.
Curr Breast Cancer Rep ; 11(3): 100-110, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-33312342

RESUMO

Purpose: Here we aim to review the association between mammographic density, collagen structure and breast cancer risk. Findings: While mammographic density is a strong predictor of breast cancer risk in populations, studies by Boyd show that mammographic density does not predict breast cancer risk in individuals. Mammographic density is affected by age, parity, menopausal status, race/ethnicity, and body mass index (BMI).New studies normalize mammographic density to BMI may provide a more accurate way to compare mammographic density in women of diverse race and ethnicity. Preclinical and tissue-based studies have investigated the role collagen composition and structure in predicting breast cancer risk. There is emerging evidence that collagen structure may activate signaling pathways associated with aggressive breast cancer biology. Summary: Measurement of film mammographic density does not adequately capture the complex signaling that occurs in women with at-risk collagen. New ways to measure at-risk collagen potentially can provide a more accurate view of risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA