Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5675, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029156

RESUMO

Ebola virus is highly lethal for great apes. Estimated mortality rates up to 98% have reduced the global gorilla population by approximately one-third. As mountain gorillas (Gorilla beringei beringei) are endangered, with just over 1000 individuals remaining in the world, an outbreak could decimate the population. Simulation modeling was used to evaluate the potential impact of an Ebola virus outbreak on the mountain gorilla population of the Virunga Massif. Findings indicate that estimated contact rates among gorilla groups are high enough to allow rapid spread of Ebola, with less than 20% of the population projected to survive at 100 days post-infection of just one gorilla. Despite increasing survival with vaccination, no modeled vaccination strategy prevented widespread infection. However, the model projected that survival rates greater than 50% could be achieved by vaccinating at least half the habituated gorillas within 3 weeks of the first infectious individual.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Hominidae , Humanos , Animais , Gorilla gorilla , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/veterinária , Surtos de Doenças/veterinária
2.
Proc Biol Sci ; 289(1969): 20212564, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35193404

RESUMO

Mountain gorillas are particularly inbred compared to other gorillas and even the most inbred human populations. As mountain gorilla skeletal material accumulated during the 1970s, researchers noted their pronounced facial asymmetry and hypothesized that it reflects a population-wide chewing side preference. However, asymmetry has also been linked to environmental and genetic stress in experimental models. Here, we examine facial asymmetry in 114 crania from three Gorilla subspecies using 3D geometric morphometrics. We measure fluctuating asymmetry (FA), defined as random deviations from perfect symmetry, and population-specific patterns of directional asymmetry (DA). Mountain gorillas, with a current population size of about 1000 individuals, have the highest degree of facial FA (explaining 17% of total facial shape variation), followed by Grauer gorillas (9%) and western lowland gorillas (6%), despite the latter experiencing the greatest ecological and dietary variability. DA, while significant in all three taxa, explains relatively less shape variation than FA does. Facial asymmetry correlates neither with tooth wear asymmetry nor increases with age in a mountain gorilla subsample, undermining the hypothesis that facial asymmetry is driven by chewing side preference. An examination of temporal trends shows that stress-induced developmental instability has increased over the last 100 years in these endangered apes.


Assuntos
Gorilla gorilla , Hominidae , Animais , Assimetria Facial/veterinária , Variação Genética , Gorilla gorilla/genética , Humanos
3.
Am J Primatol ; 84(4-5): e23291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34110030

RESUMO

The world's 1063 mountain gorillas (Gorilla beringei beringei) live in two subpopulations at the borders of the Democratic Republic of Congo, Rwanda, and Uganda. The majority of mountain gorillas are human-habituated to facilitate tourism and research, which brings mountain gorillas into close proximity of people daily. Wild great apes are proven to be susceptible to human pathogens, including viruses that have caused fatal respiratory disease in mountain gorillas (e.g., human metapneumovirus1 ). This is the result of the close genetic relatedness of humans and gorillas as species, and the structural and genetic similarity in molecular receptors that allow viruses to infect cells2 . At the time of writing, there is no evidence that severe acute respiratory syndrome coronavirus 2, the coronavirus that causes coronavirus disease 19 (COVID-19), has infected a mountain gorilla. However, due to the significant potential for human-to-gorilla transmission, mountain gorilla range States took immediate steps to minimize the COVID-19 threat. These actions included a combination of preventive practice around gorillas and other great apes (e.g., mandatory face mask use, increased "social" minimum distancing from gorillas) as well as human public health measures (e.g., daily health/fever screenings, COVID-19 screening, and quarantines). Minimization of the COVID-19 threat also required socioeconomic decision-making and political will, as all gorilla tourism was suspended by late March 2020 and guidelines developed for tourism reopening. A consortium that collaborates and coordinates on mountain gorilla management and conservation, working within an intergovernmental institutional framework, took a multifaceted One Health approach to address the COVID-19 threat to mountain gorillas by developing a phased contingency plan for prevention and response. The aim of this paper is to describe how range States and partners achieved this collaborative planning effort, with intent that this real-world experience will inform similar actions at other great ape sites.


Assuntos
Doenças dos Símios Antropoides , COVID-19 , Hominidae , Saúde Única , Vírus , Animais , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Gorilla gorilla , Humanos , Pandemias/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA