Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(9): e0034722, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435720

RESUMO

In July 2016, a severe coral reef invertebrate mortality event occurred approximately 200 km southeast of Galveston, Texas, at the East Flower Garden Bank, wherein ∼82% of corals in a 0.06-km2 area died. Based on surveys of dead corals and other invertebrates shortly after this mortality event, responders hypothesized that localized hypoxia was the most likely direct cause. However, no dissolved oxygen data were available to test this hypothesis, because oxygen is not continuously monitored within the Flower Garden Banks sanctuary. Here, we quantify microbial plankton community diversity based on four cruises over 2 years at the Flower Garden Banks, including a cruise just 5 to 8 days after the mortality event was first observed. In contrast with observations collected during nonmortality conditions, microbial plankton communities in the thermocline were differentially enriched with taxa known to be active and abundant in oxygen minimum zones or that have known adaptations to oxygen limitation shortly after the mortality event (e.g., SAR324, Thioglobaceae, Nitrosopelagicus, and Thermoplasmata MGII). Unexpectedly, these enrichments were not localized to the East Bank but were instead prevalent across the entire study area, suggesting there was a widespread depletion of dissolved oxygen concentrations in the thermocline around the time of the mortality event. Hydrographic analysis revealed the southern East Bank coral reef (where the localized mortality event occurred) was uniquely within the thermocline at this time. Our results demonstrate how temporal monitoring of microbial communities can be a useful tool to address questions related to past environmental events. IMPORTANCE In the northwestern Gulf of Mexico in July 2016, ∼82% of corals in a small area of the East Flower Garden Bank coral reef suddenly died without warning. Oxygen depletion is believed to have been the cause. However, there was considerable uncertainty, as no oxygen data were available from the time of the event. Microbes are sensitive to changes in oxygen and can be used as bioindicators of oxygen loss. In this study, we analyze microbial communities in water samples collected over several years at the Flower Garden Banks, including shortly after the mortality event. Our findings indicate that compared to normal conditions, oxygen depletion was widespread in the deep-water layer during the mortality event. Hydrographic analysis of water masses further revealed some of this low-oxygen water likely upwelled onto the coral reef.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Hipóxia , Oxigênio , Água
2.
Sci Rep ; 10(1): 12279, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704016

RESUMO

Approximately 380,000 underway measurements of sea surface salinity, temperature, and carbon dioxide (CO2) in the Gulf of Mexico (GoM) were compiled from the Surface Ocean CO2 Atlas (SOCAT) to provide a comprehensive observational analysis of spatiotemporal CO2 dynamics from 1996 to 2017. An empirical orthogonal function (EOF) was used to derive the main drivers of spatial and temporal variability in the dataset. In open and coastal waters, drivers were identified as a biological component linked to riverine water, and temperature seasonality. Air-sea flux estimates indicate the GoM open (- 0.06 ± 0.45 mol C m-2 year-1) and coastal (- 0.03 ± 1.83 mol C m-2 year-1) ocean are approximately neutral in terms of an annual source or sink for atmospheric CO2. Surface water pCO2 in the northwest and southeast GoM open ocean is increasing (1.63 ± 0.63 µatm  year-1 and 1.70 ± 0.14 µatm year-1, respectively) at rates comparable to those measured at long-term ocean time-series stations. The average annual increase in coastal CO2 was 3.20 ± 1.47 µatm year-1 for the northwestern GoM and 2.35 ± 0.82 µatm year-1 for the west Florida Shelf. However, surface CO2 in the central (coastal and open) GoM, which is influenced by Mississippi and Atchafalaya River outflow, remained fairly stable over this time period.

3.
Sci Rep ; 7(1): 5436, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710443

RESUMO

Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ωarag) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.


Assuntos
Distribuição Animal/fisiologia , Antozoários/fisiologia , Carbonato de Cálcio/química , Recifes de Corais , Animais , Clorofila/química , Ecossistema , Pesqueiros , Havaí , Oceano Pacífico , Movimentos da Água
4.
Sci Adv ; 1(5): e1500328, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26601203

RESUMO

Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA