Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 170, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533069

RESUMO

Viral infections of the central nervous system (CNS) are common worldwide and result in considerable morbidity and mortality associated with neurologic illness. Until now, there have been no epidemiologic data regarding viruses causing aseptic meningitis, encephalitis, and CNS infections in Egypt. We investigated 1735 archived cerebrospinal fluid samples collected from Egyptian patients between 2016 and 2019 and performed molecular characterization for infection for12 different viruses: herpes simplex viruses 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesviruses 6 and 7 (HHV-6 and HHV-7), human enteroviruses (HEVs), human parechovirus (HPeV), parvovirus B19 (B19V), adenovirus (AdV), and mumps virus (MuV). All included samples were negative for bacterial infection. Our results indicated a relatively high prevalence of viral infection, with HEVs being the most prevalent viruses, followed by HSV-1, EBV, and then HSV-2. The highest prevalence was among male patients, peaking during the summer. Data obtained from this study will contribute to improving the clinical management of viral infections of the CNS in Egypt.


Assuntos
Infecções do Sistema Nervoso Central , Enterovirus , Infecções por Vírus Epstein-Barr , Viroses , Vírus , Humanos , Masculino , Egito/epidemiologia , Herpesvirus Humano 4/genética , Reação em Cadeia da Polimerase/métodos , Viroses/epidemiologia , Infecções do Sistema Nervoso Central/epidemiologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 2 , DNA Viral
2.
Nat Prod Res ; 36(9): 2404-2408, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33043694

RESUMO

In this work, three fungal endophytes identified as Aspergillus terreus (AFL, AFSt and AFR), were studied for their antioxidant potential. LC-MS-based metabolomics, followed by multivariate statistical analysis were then applied to comprehensively profile their extracts. The three fungal endophytes revealed interesting antioxidant potential, in particular, the strain isolated from the Artemisia annua leaves (AFL), which was rich in different types of phenolic metabolites. Additionally, all fungal-derived ethyl acetate extracts showed potent inhibition against the prooxidant xanthine oxidase. Multivariate analysis (PCA and PLS-DA) demonstrated a unique chemical fingerprint for each strain, where phenolics, coumarins, and polyketides were the discriminative metabolites of the three fungal strains. The present findings highlighted the power of metabolomics in the chemotaxonomical classification of closely related strains. It also asserted the role of fungal endophytes in the management of oxidative stress, particularly when they are utilized in the production of fermented food products.


Assuntos
Artemisia annua , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Endófitos/metabolismo , Medicago sativa , Metabolômica , Fenóis/metabolismo
3.
Sci Rep ; 11(1): 2770, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531542

RESUMO

Fungal endophytes are a major source of anti-infective agents and other medically relevant compounds. However, their classical blinded-chemical investigation is a challenging process due to their highly complex chemical makeup. Thus, utilizing cheminformatics tools such as metabolomics and computer-aided modelling is of great help deal with such complexity and select the most probable bioactive candidates. In the present study, we have explored the fungal endophytes associated with the well-known antimalarial medicinal plant Artemisia annua for their production of further antimalarial agents. Based on the preliminary antimalarial screening of these endophytes and using LC-HRMS-based metabolomics and multivariate analyses, we suggested different potentially active metabolites (compounds 1-8). Further in silico investigation using the neural-network-based prediction software PASS led to the selection of a group of quinone derivatives (compounds 1-5) as the most possible active hits. Subsequent in vitro validation revealed emodin (1) and physcion (2) to be potent antimalarial candidates with IC50 values of 0.9 and 1.9 µM, respectively. Our approach in the present investigation therefore can be applied as a preliminary evaluation step in the natural products drug discovery, which in turn can facilitate the isolation of selected metabolites notably the biologically active ones.


Assuntos
Antimaláricos , Artemisia annua/microbiologia , Endófitos/metabolismo , Metaboloma , Plasmodium falciparum/efeitos dos fármacos , Quinonas , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Endófitos/classificação , Endófitos/isolamento & purificação , Quinonas/isolamento & purificação , Quinonas/farmacologia
4.
Sci Rep ; 11(1): 3795, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589735

RESUMO

Nosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13ß) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13ß were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13ß was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13ß represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.


Assuntos
Bacteriocinas/farmacologia , Infecção Hospitalar/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecalis/química , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana/genética , Egito , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/patogenicidade , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana
5.
Antibiotics (Basel) ; 9(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971728

RESUMO

In the present study, we investigated the actinomycetes associated with the Red Sea-derived soft coral Sarcophyton glaucum in terms of biological and chemical diversity. Three strains were cultivated and identified to be members of genera Micromonospora, Streptomyces, and Nocardiopsis; out of them, Micromonospora sp. UR17 was putatively characterized as a new species. In order to explore the chemical diversity of these actinobacteria as far as possible, they were subjected to a series of fermentation experiments under altering conditions, that is, solid and liquid fermentation along with co-fermentation with a mycolic acid-containing strain, namely Nocardia sp. UR23. Each treatment was found to affect these actinomycetes differently in terms of biological activity (i.e., antitrypanosomal activity) and chemical profiles evidenced by LC-HRES-MS-based metabolomics and multivariate analysis. Thereafter, orthogonal projections to latent structures discriminant analysis (OPLS-DA) suggested a number of metabolites to be associated with the antitrypanosomal activity of the active extracts. The subsequent in silico screenings (neural networking-based and docking-based) further supported the OPLS-DA results and prioritized desferrioxamine B (3), bafilomycin D (10), and bafilomycin A1 (11) as possible antitrypanosomal agents. Our approach in this study can be applied as a primary step in the exploration of bioactive natural products, particularly those from actinomycetes.

6.
Microorganisms ; 8(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610445

RESUMO

The main protease (Mpro) of the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was subjected to hyphenated pharmacophoric-based and structural-based virtual screenings using a library of microbial natural products (>24,000 compounds). Subsequent filtering of the resulted hits according to the Lipinski's rules was applied to select only the drug-like molecules. Top-scoring hits were further filtered out depending on their ability to show constant good binding affinities towards the molecular dynamic simulation (MDS)-derived enzyme's conformers. Final MDS experiments were performed on the ligand-protein complexes (compounds 1-12, Table S1) to verify their binding modes and calculate their binding free energy. Consequently, a final selection of six compounds (1-6) was proposed to possess high potential as anti-SARS-CoV-2 drug candidates. Our study provides insight into the role of the Mpro structural flexibility during interactions with the possible inhibitors and sheds light on the structure-based design of anti-coronavirus disease 2019 (COVID-19) therapeutics targeting SARS-CoV-2.

7.
Microorganisms ; 8(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456212

RESUMO

The diversity of actinomycetes associated with the marine sponge Coscinoderma mathewsi collected from Hurghada (Egypt) was studied. Twenty-three actinomycetes were separated and identified based on the 16S rDNA gene sequence analysis. Out of them, three isolates were classified as novel species of the genera Micromonospora, Nocardia, and Gordonia. Genome sequencing of actinomycete strains has revealed many silent biosynthetic gene clusters and has shown their exceptional capacity for the production of secondary metabolites, not observed under classical cultivation conditions. Therefore, the effect of mycolic-acid-containing bacteria or mycolic acid on the biosynthesis of cryptic natural products was investigated. Sponge-derived actinomycete Micromonospora sp. UA17 was co-cultured using liquid fermentation with two mycolic acid-containing actinomycetes (Gordonia sp. UA19 and Nocardia sp. UA 23), or supplemented with pure mycolic acid. LC-HRESIMS data were analyzed to compare natural production across all crude extracts. Micromonospora sp. UA17 was rich with isotetracenone, indolocarbazole, and anthracycline analogs. Some co-culture extracts showed metabolites such as a chlorocardicin, neocopiamycin A, and chicamycin B that were not found in the respective monocultures, suggesting a mycolic acid effect on the induction of cryptic natural product biosynthetic pathways. The antibacterial, antifungal, and antiparasitic activities for the different cultures extracts were also tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA