Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(31): 7557-7563, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38979673

RESUMO

In this work, we demonstrate the electrochemical (EC) sensing of glycine (GLY) on a gold-copper nanocluster on nitrogen-doped graphene quantum dot-modified (indigenously fabricated) screen-printed electrode (AuCuNC@N-GQD/SPE). SPE was fabricated by step-by-step printing of reference, working, and counter electrodes to develop an all-printed SPE. A comparison strategy between SPE and the glassy carbon electrode (GCE) towards the EC sensing of GLY was carried out. The sensing performance was enhanced while replacing GCE with SPE. The limit of detection (LOD) for GLY obtained by EC sensing with AuCuNC@N-GQD/GCE was 10 nM and that with AuCuNC@N-GQD/SPE was 10 times lower, 1 nM, and is the lowest LOD value reported hitherto. Compared with AuCuNC@N-GQD/GCE, the current response of AuCuNC@N-GQD/SPE exhibited a ∼2.6-times enhancement with a sensitivity of 0.206 µA µM-1 cm-2. Thus, the successful shift from GCE to SPE not only miniaturizes the sensor device but also enhances the electrochemical detection performance.


Assuntos
Carbono , Técnicas Eletroquímicas , Eletrodos , Glicina , Glicina/química , Glicina/análise , Carbono/química , Grafite/química , Limite de Detecção , Ouro/química , Vidro/química , Pontos Quânticos/química , Cobre/química
2.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718634

RESUMO

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose , Limite de Detecção , Nanocompostos , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Suor/química , Nanocompostos/química , Glucose/análise , Glucose Oxidase/química , Tinta , Técnicas Eletroquímicas , Compostos Férricos/química , Ferrocianetos/química , Polímeros/química , Reprodutibilidade dos Testes , Compostos Bicíclicos Heterocíclicos com Pontes/química , Poliestirenos
3.
ACS Omega ; 9(13): 15650-15662, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585114

RESUMO

The current study attempts to establish the interrelation between microstructure and magnetic properties induced during laser melting of the FeNi alloy. This study demonstrates the optimization of laser parameters for defect-free, uniform, and chemically homogeneous FeNi alloy synthesis. Mechanically alloyed FeNi (50-50 atom %) powders obtained after 12 and 24 h milling, with average particle sizes of 15 and 7 µm, were used as starting materials. It was found that the optimum range of laser power density for synthesis of dense and defect-free solids is between 1 and 1.4 J/mm2. For laser melting under similar conditions, 12 h milled FeNi powder produces a larger grain (∼100 µm) with a preferred texture of (001), compared to 25 µm grain size in 24 h milled FeNi, with random texture. Smaller grain size is correlated with higher resistance to domain wall movement, resulting in higher coercivity and remanence in the laser-melted samples prepared from 24 h of milled powder. The presence of microtexture in laser-melted samples prepared from 12 h milled powder is related to a higher anisotropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA