Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Nanomedicine ; 19: 7353-7365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050869

RESUMO

Introduction: Pathological scars, such as hypertrophic scars and keloids, are characterized by the proliferation of fibroblasts and the deposition of collagen that often cause pruritus, pain, and disfigurement. Due to their high incidence and deformity, pathological scars have resulted in severe physical and psychological trauma for patients. Intralesional injection of 5-fluorouracil (5-Fu) is a recommended option for treating pathological scars. However, the efficacy of 5-Fu injection was limited and unstable due to limited drug penetration and short retention time. Methods: Liposomes are promising carriers that have advantages, such as high biocompatibility, controlled release property, and enhanced clinical efficacy. Here, we constructed a transdermal 5-Fu-loaded liposome (5-Fu-Lip) to provide a more effective and safer modality to scar treatment. Results: Compared to 5-Fu, 5-Fu-Lip showed superior ability in inhibiting primary keloid fibroblasts proliferation, migration, and collagen deposition, and also significantly inhibited human umbilical vein endothelial cells (HUVECs) proliferation and microvessel construction. In vivo experiments demonstrated that 5-Fu-Lip can significantly reduce the severity of hypertrophic scars in a rabbit ear wounding model. Discussion: 5-Fu-Lip provides a promising strategy to improve drug efficacy, which has great potential in the treatment of pathological scars.


Assuntos
Proliferação de Células , Cicatriz Hipertrófica , Fibroblastos , Fluoruracila , Células Endoteliais da Veia Umbilical Humana , Queloide , Lipossomos , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Fluoruracila/química , Coelhos , Animais , Lipossomos/química , Humanos , Cicatriz Hipertrófica/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Queloide/tratamento farmacológico , Queloide/patologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Colágeno/química , Movimento Celular/efeitos dos fármacos , Administração Cutânea
2.
Nano Lett ; 24(26): 8151-8161, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912914

RESUMO

The size of liposomal drugs has been demonstrated to strongly correlate with their pharmacokinetics and pharmacodynamics. While the microfluidic method successfully achieves the production of liposomes with well-controlled sizes across various buffer/lipid flow rate ratio (FRR) settings, any adjustments to the FRR inevitably influence the concentration, encapsulation efficiency (EE), and stability of liposomal drugs. Here we describe a controllable cavitation-on-a-chip (CCC) strategy that facilitates the precise regulation of liposomal drug size at any desired FRR. The CCC-enabled size-specific liposomes exhibited striking differences in uptake and biodistribution behaviors, thereby demonstrating distinct antitumor efficacy in both tumor-bearing animal and melanoma patient-derived organoid (PDO) models. Intriguingly, as the liposome size decreased to approximately 80 nm, the preferential accumulation of liposomal drugs in the liver transitioned to a predominant enrichment in the kidneys. These findings underscore the considerable potential of our CCC approach in influencing the pharmacokinetics and pharmacodynamics of liposomal nanomedicines.


Assuntos
Dispositivos Lab-On-A-Chip , Lipossomos , Lipossomos/química , Animais , Humanos , Camundongos , Distribuição Tecidual , Tamanho da Partícula , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/patologia
3.
J Formos Med Assoc ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944614

RESUMO

BACKGROUND AND AIMS: Risk stratification for patients with a higher risk of hepatocellular carcinoma (HCC) is crucial. We aimed to investigate the role of the Fibrosis-4 (FIB-4) index in predicting chronic hepatitis C (CHC)-related HCC. METHODS: A retrospective cohort study consecutively included treatment-naive CHC patients receiving longitudinal follow-up at the National Taiwan University Hospital from 1986 to 2014. The clinical data were collected and traced for HCC development. Multivariable Cox proportional hazard regression analysis was used to investigate the predictors for HCC. RESULTS: A total of 1285 patients in the ERADICATE-C cohort were included. The median age was 54, 56% were females, and 933 had HCV viremia. There were 33%, 38%, and 29% of patients having FIB-4 index <1.45, 1.45-3.25, and ≥3.25, respectively. After a median of 9-year follow-up, 186 patients developed HCC. Multivariable analysis revealed that older age, AFP≥20 ng/mL, cirrhosis, and a higher FIB-4 index were independent predictors for HCC. Compared with patients with FIB-4 index <1.45, those with FIB-4 1.45-3.25 had a 5.51-fold risk (95% confidence interval [CI]: 2.65-11.46), and those with FIB-4 ≥ 3.25 had 7.45-fold risk (95% CI: 3.46-16.05) of HCC. In CHC patients without viremia, FIB-4 index 1.45-3.25 and FIB-4 ≥ 3.25 increased 6.78-fold and 16.77-fold risk of HCC, respectively, compared with those with FIB-4 < 1.45. CONCLUSION: The baseline FIB-4 index can stratify the risks of HCC in untreated CHC patients, even those without viremia. The FIB-4 index should thus be included in the management of CHC.

4.
Innovation (Camb) ; 5(3): 100621, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38680817

RESUMO

With over a million cases detected each year, skin disease is a global public health problem that diminishes the quality of life due to its difficulty to eradicate, propensity for recurrence, and potential for post-treatment scarring. Photodynamic therapy (PDT) is a treatment with minimal invasiveness or scarring and few side effects, making it well tolerated by patients. However, this treatment requires further research and development to improve its effective clinical use. Here, a piezoelectric-driven microneedle (PDMN) platform that achieves high efficiency, safety, and non-invasiveness for enhanced PDT is proposed. This platform induces deep tissue cavitation, increasing the level of protoporphyrin IX and significantly enhancing drug penetration. A clinical trial involving 25 patients with skin disease was conducted to investigate the timeliness and efficacy of PDMN-assisted PDT (PDMN-PDT). Our findings suggested that PDMN-PDT boosted treatment effectiveness and reduced the required incubation time and drug concentration by 25% and 50%, respectively, without any anesthesia compared to traditional PDT. These findings suggest that PDMN-PDT is a safe and minimally invasive approach for skin disease treatment, which may improve the therapeutic efficacy of topical medications and enable translation for future clinical applications.

5.
Colloids Surf B Biointerfaces ; 236: 113829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430829

RESUMO

Continuous-flow microfluidic devices have been extensively used for producing liposomes due to their high controllability and efficient synthesis processes. However, traditional methods for liposome purification, such as dialysis, gel chromatography, and ultrafiltration, are incompatible with microfluidic devices, which would dramatically restrict the efficiency of liposome synthesis. In this study, we developed a dialysis-functionalized microfluidic platform (DFMP) for in situ formation of purified drug-loaded liposomes. The device was successfully fabricated by using a high-resolution projection micro stereolithography (PµSL) 3D printer. The integrated DFMP consists of a microfluidic mixing unit, a microfluidic dialysis unit, and a dialysis membrane, enabling the liposome preparation and purification in one device. The purified ICG-loaded liposomes prepared by DFMP had a smaller size (264.01±5.34 nm to 173.93±10.71 nm) and a higher encapsulation efficiency (EE) (43.53±0.07% to 46.07±0.67%). In vivo photoacoustic (PA) imaging experiment demonstrated that ICG-loaded liposomes purified with microfluidic dialysis exhibited a stronger penetration and accumulation (2-3 folds) in tumor sites. This work provides a new strategy for one-step production of purified drug-loaded liposomes.


Assuntos
Lipossomos , Microfluídica , Lipossomos/química , Microfluídica/métodos , Diálise Renal , Ultrafiltração , Dispositivos Lab-On-A-Chip
6.
Adv Sci (Weinh) ; 11(14): e2305489, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311578

RESUMO

Keloids are benign fibroproliferative tumors that severely diminish the quality of life due to discomfort, dysfunction, and disfigurement. Recently, ultrasound technology as a noninvasive adjuvant therapy is developed to optimize treatment protocols. However, the biophysical mechanisms have not yet been fully elucidated. Here, it is proposed that piezo-type mechanosensitive ion channel component 1 (Piezo1) plays an important role in low-frequency sonophoresis (LFS) induced mechanical transduction pathways that trigger downstream cellular signaling processes. It is demonstrated that patient-derived primary keloid fibroblasts (PKF), NIH 3T3, and HFF-1 cell migration are inhibited, and PKF apoptosis is significantly increased by LFS stimulation. And the effects of LFS is diminished by the application of GsMTx-4, the selective inhibitor of Piezo1, and the knockdown of Piezo1. More importantly, the effects of LFS can be imitated by Yoda1, an agonist of Piezo1 channels. Establishing a patient-derived xenograft keloid implantation mouse model further verified these results, as LFS significantly decreased the volume and weight of the keloids. Moreover, blocking the Piezo1 channel impaired the effectiveness of LFS treatment. These results suggest that LFS inhibits the malignant characteristics of keloids by activating the Piezo1 channel, thus providing a theoretical basis for improving the clinical treatment of keloids.


Assuntos
Queloide , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Canais Iônicos/metabolismo , Queloide/metabolismo , Queloide/terapia , Qualidade de Vida , Transdução de Sinais
7.
Sci Adv ; 10(7): eadl2232, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354252

RESUMO

Optical imaging and phototherapy in deep tissues face notable challenges due to light scattering. We use encoded acoustic holograms to generate three-dimensional acoustic fields within the target medium, enabling instantaneous and robust modulation of the volumetric refractive index, thereby noninvasively controlling the trajectory of light. Through this approach, we achieved a remarkable 24.3% increase in tissue heating rate in vitro photothermal effect tests on porcine skin. In vivo photoacoustic imaging of mouse brain vasculature exhibits an improved signal-to-noise ratio through the intact scalp and skull. These findings demonstrate that our strategy can effectively suppress light scattering in complex biological tissues by inducing low-angle scattering, achieving an effective depth reaching the millimeter scale. The versatility of this strategy extends its potential applications to neuroscience, lithography, and additive manufacturing.


Assuntos
Técnicas Fotoacústicas , Camundongos , Animais , Suínos , Técnicas Fotoacústicas/métodos , Fototerapia , Crânio , Acústica , Refratometria
8.
Small ; 20(27): e2308525, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308351

RESUMO

The mortality rate among cancer patients is primarily attributed to tumor metastasis. The evaluation of metastasis potential provides a powerful framework for personalized therapies. However, little work has so far been undertaken to precisely model tumor metastasis in vitro, hindering the development of preventive and therapeutic interventions. In this work, a tumor-metastasis-mimicked Transwell-integrated organoids-on-a-chip platform (TOP) for precisely evaluating tumor metastatic potential is developed. Unlike the conventional Transwell device for detecting cell migration, the engineered device facilitates the assessment of metastasis in patient-derived organoids (PDO). Furthermore, a novel Transwell chamber with a hexagon-shaped structure is developed to mimic the migration of tumor cells into surrounding tissues, allowing for the evaluation of tumor metastasis in a horizontal direction. As a proof-of-concept demonstration, tumor organoids and metastatic clusters are further evaluated at the protein, genetic, and phenotypic levels. In addition, preliminary drug screening is undertaken to highlight the potential for using the device to combat cancers. In summary, the tumor-metastasis-mimicked TOP offers unique capabilities for evaluating the metastasis potential of tumor organoids and contributes to the development of personalized cancer therapies.


Assuntos
Dispositivos Lab-On-A-Chip , Metástase Neoplásica , Organoides , Organoides/patologia , Humanos , Linhagem Celular Tumoral , Movimento Celular , Sistemas Microfisiológicos
9.
Hepatol Res ; 53(10): 1021-1030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291079

RESUMO

AIM: Alpha-fetoprotein (AFP) checkup with abdominal ultrasonography for hepatocellular carcinoma (HCC) surveillance remains controversial. We evaluated a serial AFP-increase and high AFP levels in the prediction of HCC. METHODS: At-risk patients with chronic liver disease underwent HCC surveillance with trimonthly AFP measurement were included and categorized into HCC and non-HCC groups. Their AFP levels at 12, 9, and 6 months (-6M) before the outcome date were evaluated. Group-based trajectory analysis and multivariable regression analysis were performed to identify AFP trajectories as risk predictors for HCC. RESULTS: Overall, 2776 patients were included in the HCC (n = 326) and non-HCC (n = 2450) groups. Serial AFP levels were significantly higher in the HCC than the non-HCC groups. Trajectory analysis identified AFP-increase group (11%) increased 24-fold risks of HCC compared with the AFP-stable (89%) group. Compared with patients without the AFP-increase, a serial 3-month AFP-increase ≥10% elevated HCC risk by 12.1-fold (95% CI: 6.5-22.4) in 6 months, and the HCC risks increased 13-60 fold in patients with cirrhosis, hepatitis B, or C receiving antiviral therapy, or AFP levels <20 ng/ml. Combining serial AFP-increase ≥10% and AFP ≥20 ng/ml at -6M significantly increased 41.7-fold (95% CI: 13.8-126.2) HCC risks. In patients who underwent biannual AFP checkups, those with both 6-month AFP-increase ≥10% and AFP ≥20 ng/ml increased 22.1-fold (95% CI: 12.52-39.16) HCC risks in 6 months. Most HCCs were detected at an early stage. CONCLUSIONS: Serial 3-6-month AFP-increase of ≥10% previously and AFP level of ≥20 ng/ml significantly increased HCC risks in 6 months.

10.
Small ; 19(7): e2205498, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449632

RESUMO

Targeted liposomes, as a promising carrier, have received tremendous attention in COVID-19 vaccines, molecular imaging, and cancer treatment, due to their enhanced cellular uptake and payload accumulation at target sites. However, the conventional methods for preparing targeted liposomes still suffer from limitations, including complex operation, time-consuming, and poor reproducibility. Herein, a facile and scalable strategy is developed for one-step construction of targeted liposomes using a versatile microfluidic mixing device (MMD). The engineered MMD provides an advanced synthesis platform for multifunctional liposome with high production rate and controllability. To validate the method, a programmed death-ligand 1 (PD-L1)-targeting aptamer modified indocyanine green (ICG)-liposome (Apt-ICG@Lip) is successfully constructed via the MMD. ICG and the PD-L1-targeting aptamer are used as model drug and targeting moiety, respectively. The Apt-ICG@Lip has high encapsulation efficiency (89.9 ± 1.4%) and small mean diameter (129.16 ± 5.48 nm). In vivo studies (PD-L1-expressing tumor models) show that Apt-ICG@Lip can realize PD-L1 targeted photoacoustic imaging, fluorescence imaging, and photothermal therapy. To verify the versatility of this approach, various targeted liposomes with different functions are further prepared and investigated. These experimental results demonstrate that this method is concise, efficient, and scalable to prepare multifunctional targeted liposomal nanoplatforms for molecular imaging and disease theranostics.


Assuntos
COVID-19 , Lipossomos , Humanos , Antígeno B7-H1 , Microfluídica , Vacinas contra COVID-19 , Reprodutibilidade dos Testes , Verde de Indocianina , Linhagem Celular Tumoral
11.
Micromachines (Basel) ; 15(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38258209

RESUMO

Liposomes possess the potential to enhance drug solubility, prolong the duration of circulation, and augment drug accumulation at the tumor site through passive and active targeting strategies. However, there is a lack of studies examining the in vivo tumor penetration capabilities of liposomes of varying sizes, which hampers the development of drug delivery systems utilizing liposomal nanocarriers. Here, we present an indocyanine green (ICG)-loaded liposomes-assisted photoacoustic computed tomography (PACT) for directly evaluating the tumor penetration ability of liposomal nanocarriers in vivo. Through the utilization of microfluidic mixing combined with extrusion techniques, we successfully prepare liposomes encapsulating ICG in both large (192.6 ± 8.0 nm) and small (61.9 ± 0.6 nm) sizes. Subsequently, we designed a dual-wavelength PACT system to directly monitor the in vivo tumor penetration of large- and small-size ICG-encapsulated liposomes. In vivo PACT experiments indicate that ICG-loaded liposomes of smaller size exhibit enhanced penetration capability within tumor tissues. Our work presents a valuable approach to directly assess the penetration ability of liposomal nanocarriers in vivo, thereby facilitating the advancement of drug delivery systems with enhanced tumor penetration and therapeutic efficacy.

12.
Micromachines (Basel) ; 13(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744560

RESUMO

Recently, indocyanine green (ICG), as an FDA-approved dye, has been widely used for phototherapy. It is essential to obtain information on the migration and aggregation of ICG in deep tissues. However, existing fluorescence imaging platforms are not able to obtain the structural information of the tissues. Here, we prepared ICG liposomes (ICG-Lips) and built a dual-wavelength photoacoustic computed tomography (PACT) system with piezoelectric ring-array transducer to image the aggregation of ICG-Lips in tumors to guide phototherapy. Visible 780 nm light excited the photoacoustic (PA) effects of the ICG-Lips and near-infrared 1064 nm light provided the imaging of the surrounding tissues. The aggregation of ICG-Lips within the tumor and the surrounding tissues was visualized by PACT in real time. This work indicates that PACT with piezoelectric ring-array transducer has great potential in the real-time monitoring of in vivo drug distribution.

13.
Ann Transl Med ; 10(4): 233, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280368

RESUMO

Background: Hormone receptor-positive (HR+) and human epidermal growth factor receptor-2 negative (HER2-) breast cancer is the most common molecular subtype of breast cancer in many countries, and endocrine therapy remains a mainstay in its treatment. Cyclin-dependent kinase (CDK) 4/6 inhibitors are a new class of targeted agents administered orally that are recommended being used in combination with endocrine therapy as first and second line treatments for advanced HR+/HER2- breast cancer. However, their high prices largely hinder using these drugs in real world settings. To offer a new basis for future research, we investigated the cost-effectiveness of combinations of CDK4/6 inhibitors with endocrine therapy in the treatment of advanced HR+/HER2- breast cancer. Methods: We systematically searched several frequently used databases and identified economic evaluations published from February 2015 to April 2021. The systematic review was performed after retrieving the literatures and extracting data based on inclusion and exclusion criteria. The quality of each selected economic evaluation was assessed by the Consolidated Health Economic Evaluation Reporting Standards (CHEERS). Results: The literature search yielded 161 articles, among which fourteen studies (15 articles) with CHEER scores ranging from 58.33% to 87.50% entered the final analysis. Markov models were used in most studies. Based on the currently available data, CDK4/6 inhibitors plus endocrine therapy were less cost-effective in first- or second-line treatment of patients with HR+/HER2- advanced breast cancer. However, ribociclib plus letrozole was more cost-effective than palbociclib plus letrozole in the first-line treatment of postmenopausal women. The economic impacts of CDK4/6 inhibitors plus endocrine therapy in non-postmenopausal patients or second-line therapy cannot be fully evaluated due to the limited number of studies. The three most common factors affecting economic outcomes were the prices of CDK4/6 inhibitors, hazard ratios for progression-free survival and overall survival, and health status utility values. Discussion: CDK4/6 inhibitors plus endocrine therapy have shown significantly improved efficacy outcomes in HR+/HER2- metastatic breast cancer (mBC)/advancer breast cancer (ABC) first-line and second-line treatment for endocrine-sensitive and endocrine-resistant populations, while more potential fields including neoadjuvant and adjuvant settings are being identified to benefit a wider range of breast cancer patients. Meanwhile, risk of severe adverse events that more likely to happen in patients treated with CDK4/6 inhibitors can lead to reduced life quality and higher medical costs patients need to afford. The adverse drug reaction related cost in several economic burden studies were explored to be primarily driven by hospitalizations and outpatient, and assessment of cost associated with CDK4/6 inhibitors adverse events is worth further developing. Drug wastage costs were found higher in palbociclib regimen than ribociclib regimen due to different dosing patterns. Moreover, current economic evaluations showed that ribociclib plus letrozole had better economic benefits than palbociclib plus letrozole for first-line treatment of postmenopausal women with HR+/HER2- ABC.

14.
J Formos Med Assoc ; 121(3): 703-711, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34452785

RESUMO

BACKGROUND: The risk of hepatocellular carcinoma (HCC) is reduced but not eliminated after nucleos(t)ide analogue (NA) therapy in chronic hepatitis B (CHB). We aimed to investigate the role of serum Prothrombin Induced by Vitamin K Absence or Antagonist-II (PIVKA-II) and alpha-fetoprotein in predicting HCC and mortality in cirrhotic CHB patients at virological remission (VR) following NA therapy. METHODS: Patients with CHB-related cirrhosis undergoing NA therapy from two medical centers in Taiwan were retrospectively included. Serum PIVKA-II were quantified by an automated chemiluminescence assay. Multivariable Cox proportional hazards regression models were used to identify predictors for HCC and death. Serial on-treatment PIVKA-II levels after VR were investigated. RESULTS: Overall, 293 CHB-related cirrhosis patients were included. At VR, the mean age was 55, and the mean PIVKA-II level was 35 mAU/mL. After a mean follow-up of 78 months, 76 patients developed HCC and 19 died. After adjustment for confounding factors, alpha-fetoprotein >7 ng/mL (hazard ratio [HR]: 2.84, 95% confidence interval [CI]: 1.73-4.67) and PIVKA-II >50 mAU/mL (HR: 2.46, 95%CI: 1.35-4.49) at VR significantly predicted HCC development. In patients with alpha-fetoprotein ≤10 ng/mL or ≤20 ng/mL at VR, PIVKA-II >50 mAU/mL increased 2.45 or 3.16-fold risk of HCC, respectively. PIVKA-II levels after VR increased serially in patients who developed HCC afterwards. CONCLUSION: In patients with CHB-related cirrhosis, serum alpha-fetoprotein >7 ng/mL and PIVKA-II >50 mAU/mL at the time of antiviral therapy-induced VR is associated with a greater risk of HCC. PIVKA-II is a predictive marker for HCC in patients with low normal alpha-fetoprotein level.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais , Carcinoma Hepatocelular/complicações , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Pessoa de Meia-Idade , Precursores de Proteínas , Protrombina , Curva ROC , Estudos Retrospectivos , alfa-Fetoproteínas
15.
Artigo em Inglês | MEDLINE | ID: mdl-34928795

RESUMO

In vivo imaging of skin is commonly used to investigate dynamic processes in the progression and treatment of psoriasis. Photoacoustic mesoscopy is a new non-invasive imaging modality widely used in bio-imaging, and has recently been applied to imaging skin in vivo. However, photoacoustic imaging has shortcomings. Although high-frequency ultrasonic transducers enable high-resolution photoacoustic imaging, the images may be bandwidth-limited. To overcome this limitation, we designed and fabricated a broadband ultrasonic transducer for photoacoustic mesoscopy. The center frequency of the transducer was 32 MHz (88% bandwidth at -6 dB). The transducer was used to visualize mouse and human skin morphology. Colocalization of high- and low-frequency components revealed information about both the skin surface and dermis. To explore dynamic structural changes in mouse back skin during psoriasis progression, we measured blood oxygen saturation and total hemoglobin in a mouse model using multiwavelength imaging without contrast agents. The results indicate that functional photoacoustic mesoscopy using a broadband high-frequency transducer has great potential for clinical imaging of skin disease.


Assuntos
Técnicas Fotoacústicas , Psoríase , Animais , Camundongos , Técnicas Fotoacústicas/métodos , Psoríase/diagnóstico por imagem , Pele , Transdutores , Ultrassom
16.
Front Bioeng Biotechnol ; 9: 786376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778242

RESUMO

Current Photoacoustic tomography (PAT) approaches are based on a single-element transducer that exhibits compromised performance in clinical imaging applications. For example, vascular, tumors are likely to have complicated shapes and optical absorptions, covering relatively wide spectra in acoustic signals. The wide ultrasonic spectra make it difficult to set the detection bandwidth optimally in advance. In this work, we propose a stack-layer dual-element ultrasonic transducer for PAT. The central frequencies of the two piezoelectric elements are 3.06 MHz (99.3% bandwidth at -6 dB) and 11.07 MHz (85.2% bandwidth at -6 dB), respectively. This transducer bridges the sensitivity capability of ultrasound and the high contrast of optical methods in functional photoacoustic tomography. The dual-element transducer enabled multiscale analysis of the vascular network in rat brains. Using a multi-wavelength imaging scheme, the blood oxygen saturation was also detected. The preliminary results showed the great potential of broad-bandwidth functional PAT on vascular network visualization. The method can also be extended to whole-body imaging of small animals, breast cancer detection, and finger joint imaging.

17.
Front Bioeng Biotechnol ; 9: 773705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708031

RESUMO

Although microfluidic approaches for liposomes preparation have been developed, fabricating microfluidic devices remains expensive and time-consuming. Also, owing to the traditional layout of microchannels, the volumetric throughput of microfluidics has been greatly limited. Herein an ultra-high volumetric throughput nanoliposome preparation method using 3D printed microfluidic chips is presented. A high-resolution projection micro stereolithography (PµSL) 3D printer is applied to produce microfluidic chips with critical dimensions of 400 µm. The microchannels of the microfluidic chip adopt a three-layer layout, achieving the total flow rate (TFR) up to 474 ml min-1, which is remarkably higher than those in the reported literature. The liposome size can be as small as 80 nm. The state of flows in microchannels and the effect of turbulence on liposome formation are explored. The experimental results demonstrate that the 3D printed integrated microfluidic chip enables ultra-high volumetric throughput nanoliposome preparation and can control size efficiently, which has great potential in targeting drug delivery systems.

18.
Front Genet ; 12: 685788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490032

RESUMO

Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in Capsicum chinense. Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that BC332_23046 (auxin response factor 8), BC332_18317 (auxin-responsive protein IAA20), BC332_13398 (ethylene-responsive transcription factor), and BC332_27606 (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA-miRNA-mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.

19.
Biomed Res Int ; 2021: 6685584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855080

RESUMO

BACKGROUND: Although fixed-volume conventional fluid preloading protocol fails to attenuate postspinal hypotension during cesarean delivery, the effect of goal-directed fluid therapy (GDFT) remains less explored. Continuous noninvasive finger cuff arterial pressure monitoring using devices such as the ClearSight System can provide the noninvasive stroke volume value, enabling clinicians to perform GDFT before spinal anesthesia; however, the efficacy of GDFT requires further elucidation. METHOD: In total, 71 consecutive full-term pregnant women were randomly divided into a control group (n = 34) and a GDFT group (n = 37). Before spinal anesthesia, the control group received a fixed dose (1000 mL) of crystalloid fluid, but the GDFT group received repeated 3 mL/kg body weight of crystalloid fluid challenges within 3 minutes with a 1-minute interval between each fluid challenge based on the stroke volume incremental changes obtained using the ClearSight System (targeting a stroke volume increase of ≥5% after a fluid challenge). The primary outcome was the incidence of postspinal hypotension. The secondary outcomes were total fluid volume, vasopressor dosage, hemodynamic parameter changes, maternal adverse effects, and neonatal profiles. RESULT: Women in the GDFT group received more fluid than did those in the control group (1132 ± 108 vs. 1247 ± 202 mL; p = 0.0044), but the incidence of postspinal hypotension (79.4% vs. 73.0%,; p = 0.5864) and norepinephrine dose (12.5 ± 10.6 vs. 15.1 ± 12.8 mcg, respectively; p = 0.3512) was comparable between the two groups. Fewer women in the GDFT group experienced nausea (61.76% vs. 35.14%; p = 0.0332). Neonatal outcomes (Apgar score and umbilical blood analysis) were comparable and typical in both groups. CONCLUSION: ClearSight-guided GDFT did not ameliorate postspinal hypotension but may reduce nausea. This trial is registered with NCT03013140.


Assuntos
Pressão Arterial/fisiologia , Determinação da Pressão Arterial/instrumentação , Cesárea , Dedos/fisiologia , Hidratação , Objetivos , Adulto , Hemodinâmica , Humanos , Recém-Nascido , Cuidados Intraoperatórios
20.
CNS Neurosci Ther ; 27(2): 220-232, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32864894

RESUMO

INTRODUCTION: The two-pore domain potassium channel TREK-1 is a member of background K+ channels that are thought to provide baseline regulation of membrane excitability. Recent studies have highlighted the putative role of TREK-1 in the action of antidepressants, and its antagonists might be potentially effective antidepressants. However, the mechanisms underlying the actions of TREK-1 are not yet fully understood. METHODS: The expression of TREK-1 was examined in a mouse model of chronic unpredictable mild stress (CUMS) using immunoblotting. Neuron-specific genetic manipulation of TREK-1 was performed through adeno-associated virus. Behavioral tests were performed to evaluate depression-related behaviors. Electrophysiological recordings were used to evaluate synaptic plasticity. Golgi staining was used to examine neuroplasticity. RESULTS: TREK-1 expression was increased in the mouse hippocampus after CUMS. Knockdown of TREK-1 in hippocampal neurons significantly attenuated depressive-like behaviors and prevented the decrease of CUMS-induced synaptic proteins in mice. Further examination indicated that neuron-specific knockdown of TREK-1 in the hippocampus prevented stress-induced impairment of glutamatergic synaptic transmission in the CA1 region. Moreover, chronic TREK-1 inhibition protected against CUMS-induced depressive-like behaviors and impairment of synaptogenesis in the hippocampus. CONCLUSION: Our results indicate a role for TREK-1 in the modulation of synaptic plasticity in a mouse model of depression. These findings will provide insight into the pathological mechanism of depression and further evidence for a novel target for antidepressant treatment.


Assuntos
Depressão/genética , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Animais , Compostos Bicíclicos com Pontes/administração & dosagem , Depressão/tratamento farmacológico , Depressão/psicologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Oxazóis/administração & dosagem , Peptídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA