Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(14): 6500-6513, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38532637

RESUMO

It is a challenging task to design a piezoelectric photocatalyst with excellent performance under mechanical agitation instead of ultrasonic irradiation. Integrating vacancy defects into a heterojunction seems to be an effective strategy for synergistically increasing its piezo-photocatalytic performance. For this goal, a two-step hydrothermal method was adopted to architect a type-I oxygen-vacancy-rich BaTiO3/BiOBr heterojunction to surge the degradation of Rhodamine B (RhB) under the combined action of simulated sunlight irradiation and mechanical agitation. Various instrumental techniques demonstrated the formation of a BaTiO3/BiOBr heterojunction with high crystallinity. The existence of surface oxygen vacancies was confirmed by XPS and EPR tests. PFM results manifested that this heterojunction had excellent piezoelectric properties, with a piezoelectric response value of 30.31 pm V-1. Comparative experiments indicated that RhB degradation efficiency under piezo-photocatalysis over this heterojunction largely exceeded the total sum of those under piezocatalysis and photocatalysis. h+, ·O2-, and 1O2 were the dominant reactive species for RhB degradation. The improved separation efficiency of photogenerated charges was verified by electrochemical measurements. DFT calculations indicated that the polarization of BaTiO3 could affect the electronic band structure of BiOBr. This work will provide comprehensive insights into piezo-photocatalytic mechanism at a microcosmic level and help to develop new-styled piezoelectric photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA