Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phytomedicine ; 129: 155623, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38703661

RESUMO

BACKGROUND: Alkaloids have attracted enduring interest worldwide due to their remarkable therapeutic effects, including analgesic, anti-inflammatory, and anti-tumor properties, thus offering a rich source for lead compound design and new drug discovery. However, some of these alkaloids possess intrinsic toxicity. Processing (Paozhi) is a pre-treatment step before the application of herbal medicines in traditional Chinese medicine (TCM) clinics, which has been employed for centuries to mitigate the toxicity of alkaloid-rich TCMs. PURPOSE: To explore the toxicity phenotypes, chemical basis, mode of action, detoxification processing methods, and underlying mechanisms, we can gain crucial insights into the safe and rational use of these toxic alkaloid-rich herbs. Such insights have the great potential to offer new strategies for drug discovery and development, ultimately improving the quality of life for millions of people. METHODS: Literatures published or early accessed until December 31, 2023, were retrieved from databases including PubMed, Web of Science, and CNKI. The following keywords, such as "toxicity", "alkaloid", "detoxification", "processing", "traditional Chinese medicine", "medicinal plant", and "plant", were used in combination or separately for screening. RESULTS: Toxicity of alkaloids in TCM includes hepatotoxicity, nephrotoxicity, neurotoxicity, cardiotoxicity, and other forms of toxicity, primarily induced by pyrrolizidines, quinolizidines, isoquinolines, indoles, pyridines, terpenoids, and amines. Factors such as whether the toxic-alkaloid enriched part is limited or heat-sensitive, and whether toxic alkaloids are also therapeutic components, are critical for choosing appropriate detoxification processing methods. Mechanisms of alkaloid detoxification includes physical removal, chemical decomposition or transformation, as well as biological modifications. CONCLUSION: Through this exploration, we review toxic alkaloids and the mechanisms underlying their toxicity, discuss methods to reduce toxicity, and unravel the intricate mechanisms behind detoxification. These offers insights into the quality control of herbs containing toxic alkaloids, safe and rational use of alkaloid-rich TCMs in clinics, new strategies for drug discovery and development, and ultimately helping improve the quality of life for millions of people.

2.
Cell Death Dis ; 15(5): 336, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744865

RESUMO

Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.


Assuntos
Fibrose , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Animais , Transição Epitelial-Mesenquimal , Apoptose , Terapia de Alvo Molecular
3.
J Pharm Anal ; 14(5): 100927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38646453

RESUMO

Cornus officinalis, a medicinal and edible plant known for its liver-nourishing properties, has shown promise in inhibiting the activation of hepatic stellate cells (HSCs), crucial indicators of hepatic fibrosis, especially when processed by high pressure wine steaming (HPWS). Herein, this study aims to investigate the regulatory effects of cornus officinalis, both in its raw and HPWS forms, on inflammation and apoptosis in liver fibrosis and their underlying mechanisms. In vivo liver fibrosis models were established by subcutaneous injection of CCl4, while in vitro HSCs were exposed to transforming growth factor-ß (TGF-ß). These findings demonstrated that cornus officinalis with HPWS conspicuously ameliorated histopathological injury, reduced the release of proinflammatory factors, and decreased collagen deposition in CCl4-induced rats compared to its raw form. Utilizing ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS) combined with network analysis, we identified that the pharmacological effects of the changed components of cornus officinalis before and after HPWS, primarily centered on the adenosine phosphate (AMP)-activated protein kinase (AMPK) pathway. Of note, cornus officinalis activated AMPK and Sirtuin 3 (SIRT3), promoting the apoptosis of activated HSCs through the caspase cascade by regulating caspase3, caspase6 and caspase9. siRNA experiments showed that cornus officinalis could regulate AMPK activity and its mediated-apoptosis through SIRT3. In conclusion, cornus officinalis exhibited the ability to reduce inflammation and apoptosis, with the SIRT3-AMPK signaling pathway identified as a potential mechanism underlying the synergistic effect of cornus officinalis with HPWS on anti-liver fibrosis.

4.
Front Pharmacol ; 15: 1346383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405671

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type of lung tumor; however, we lack effective early detection indicators and therapeutic targets. Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) is vital to initiate protein synthesis, acting as a scaffolding protein for the eukaryotic protein translation initiation factor complex, EIF4F, which regulates protein synthesis together with EIF4A, EIF4E, and other translation initiation factors. However, EIF4G1's function in NSCLC cancer is unclear. Herein, transcriptome sequencing showed that knockdown of EIF4G1 in H1299 NSCLC cells upregulated the expression of various inflammation-related factors. Inflammatory cytokines were also significantly overexpressed in NSCLC tumor tissues, among which CXCL8 (encoding C-X-C motif chemokine ligand 8) showed the most significant changes in both in the transcriptome sequencing data and tumor tissues. We revealed that EIF4G1 regulates the protein level of TNF receptor superfamily member 10a (TNFRSF10A) resulting in activation of the mitogen activated protein kinase (MAPK) and nuclear factor kappa B (NFκB) pathways, which induces CXCL8 secretion, leading to targeted chemotaxis of immune cells. We verified that H1299 cells with EIF4G1 knockdown showed increased chemotaxis compared with the control group and promoted increased chemotaxis of macrophages. These data suggested that EIF4G1 is an important molecule in the inflammatory response of cancer tissues in NSCLC.

5.
Food Res Int ; 172: 113114, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689886

RESUMO

Chemical structural characterization of chemical compounds from hawthorn fruits and its thermal processed products was carried out in present study. By linking Global Natural Products Social (GNPS) Molecular Networking and MolNetEnhancer workflow, seventy-four chemical compounds in hawthorn fruits and its thermal processed products were tentatively identified. Three quercetagetin derivatives (quercetagetin-3-O-glucoside, quercetagetin-di-glucoside and its isomer), five quercetin or kaempferol derivatives (quercetin-acetylapiosyl-hexoside, quercetin-3-O-(6″-malonyl-hexoside), quercetin-3-O-(6″-malonyl-hexoside)-(1 â†’ 2)-O-hexoside, quercetin-3-O-(6″-malonyl-hexoside)-(1 â†’ 2)-O-deoxyhexoside, kaempferol-3-O-(6″-malonyl-hexoside)), six procyanidins including four (E)C-ethyl-procyanidins and two A-type procyanidins digallate, as well as 13 triterpenoids including ursolic aldehyde, triterpenoid glycosides, and triterpene acids were reported for the first time in hawthorn fruits. In addition, triterpenoids exhibited considerable thermal stability, while all of flavonoid glycosides, proanthocyanidins and 10 in 13 organic acids showed dramatic decrease after thermal processing.


Assuntos
Crataegus , Proantocianidinas , Triterpenos , Frutas , Quempferóis , Quercetina , Glucosídeos , Glicosídeos
6.
Anal Chem ; 95(26): 9940-9948, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37314081

RESUMO

Untargeted mass spectrometry is a robust tool for biology, but it usually requires a large amount of time on data analysis, especially for system biology. A framework called Multiple-Chemical nebula (MCnebula) was developed herein to facilitate the LC-MS data analysis process by focusing on critical chemical classes and visualization in multiple dimensions. This framework consists of three vital steps as follows: (1) abundance-based classes (ABC) selection algorithm, (2) critical chemical classes to classify "features" (corresponding to compounds), and (3) visualization as multiple Child-Nebulae (network graph) with annotation, chemical classification, and structure. Notably, MCnebula can be used to explore the classification and structural characteristic of unknown compounds beyond the limit of the spectral library. Moreover, it is intuitive and convenient for pathway analysis and biomarker discovery because of its function of ABC selection and visualization. MCnebula was implemented in the R language. A series of tools in R packages were provided to facilitate downstream analysis in an MCnebula-featured way, including feature selection, homology tracing of top features, pathway enrichment analysis, heat map clustering analysis, spectral visualization analysis, chemical information query, and output analysis reports. The broad utility of MCnebula was illustrated by a human-derived serum data set for metabolomics analysis. The results indicated that "Acyl carnitines" were screened out by tracing structural classes of biomarkers, which was consistent with the reference. A plant-derived data set was investigated to achieve a rapid annotation and discovery of compounds in E. ulmoides.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Algoritmos , Análise de Dados
7.
J Ethnopharmacol ; 301: 115821, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36220510

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Paeoniae Alba (RPA), a traditional Chinese medicine, has been used frequently in the treatment of asthma. Previous studies demonstrated the dichloromethane fraction of Stir-Frying RPA (FDCM) enhanced the effect of anti-allergic asthma compared with the dichloromethane fraction of RPA (DCM). AIM OF THE STUDY: The significant increasing of Paeoniflorin (PF), ethyl gallate (EG), 1,2,3,4,6-pentagalloylglucose (PGG) had been observed in FDCM. This study aimed to investigate the effects and mechanisms of these compounds from FDCM in ovalbumin (OVA)-induced allergic asthma mouse model. MATERIALS AND METHODS: The significant difference contents compounds fraction (FB-40) and other fractions in FDCM were enriched by Medium Pressure Liquid Chromatography (MPLC). The pharmacodynamics was verified among all fractions in OVA-induced allergic asthma mice. Moreover, the drug dose dependence of FB-40 (0.42 mg/kg, 0.21 mg/kg, and 0.07 mg/kg), which were the most active fraction from FDCM for anti-allergic asthma, was explored. The expression of IL-6, p-STAT3, and STAT3 was analyzed by Western blot analysis. In addition, the main components of FB-40 were identified by UPLC with standards. Finally, the anti-inflammatory effects of the main components from FB-40 were detected by LPS-stimulated BEAS-2B cells using an Elisa assay. RESULTS: The results showed that FB-40 was the most active fraction from FDCM, which could significantly improve the lung tissue pathological condition, and decrease the number of inflammatory cells in bronchoalveolar lavage fluid (BALF). It had greater pharmacological activity than its main component PF. FB-40 also showed dose dependence and regulated the IL-6/STAT3 signaling pathway in allergic asthma mice. Besides, PF, Albiflorin (AF), PGG, EG, and 1,2,3,6-Tetra-O-galloyl-ß-D-glucose (TGG) from FB-40 were identified by UPLC with the standard. At last, in the LPS-induced BEAS-2B cell experiments, EG, PGG, 1,2,3,6-Tetra-O-galloyl-ß-D-glucose (TGG) showed stronger inhibiting activities of cytokine than the monoterpenoid glycosides (PF and AF). CONCLUSION: The research proved that FB-40 was an active fraction in FDCM, which regulates IL-6/STAT3 Signaling Pathway to ameliorate allergic asthma. Gallic acids including TGG and PGG, and EG also play a role in the treatment of allergic asthma in FB-40.


Assuntos
Antialérgicos , Asma , Animais , Camundongos , Antialérgicos/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/patologia , Líquido da Lavagem Broncoalveolar , Glucose , Interleucina-6 , Lipopolissacarídeos , Cloreto de Metileno , Camundongos Endogâmicos BALB C , Ovalbumina , Transdução de Sinais
8.
Br J Pharmacol ; 180(22): 2862-2879, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111431

RESUMO

Fibrosis is a common process of tissue repair response to multiple injuries in all chronic progressive diseases, which features with excessive deposition of extracellular matrix. Fibrosis can occur in all organs and tends to be nonreversible with the progress of the disease. Different cells types in different organs are involved in the occurrence and development of fibrosis, that is, hepatic stellate cells, pancreatic stellate cells, fibroblasts and myofibroblasts. Various types of programmed cell death, including apoptosis, autophagy, ferroptosis and necroptosis, are closely related to organ fibrosis. Among these programmed cell death types, necroptosis, an emerging regulated cell death type, is regarded as a huge potential target to ameliorate organ fibrosis. In this review, we summarize the role of necroptosis signalling in organ fibrosis and collate the small molecule compounds targeting necroptosis. In addition, we discuss the potential challenges, opportunities and open questions in using necroptosis signalling as a potential target for antifibrotic therapies. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.


Assuntos
Matriz Extracelular , Necroptose , Humanos , Fibrose , Matriz Extracelular/metabolismo , Fibroblastos
9.
Phytother Res ; 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36426741

RESUMO

Euphorbia pekinensis (EP) is a commonly used Chinese medicine treating edema with potential hepatorenal toxicity. However, its toxic mechanism and prevention are remained to be explored. Oleanolic acid (OA) is a triterpene acid with potential hepatorenal protective activities. We investigated the protective effect and potential mechanism of OA on EP-induced hepatorenal toxicity. In this study, rats were given total diterpenes from EP (TDEP, 16 mg/kg) combined with OA (10, 20, 40 mg/kg) by gavage for 4 weeks. The results showed that TDEP administration could lead to a 3-4-fold increasement in hepatorenal biochemical parameters with histopathological injuries, while OA treatment could ameliorate them in a dose-dependent manner. At microbial and metabolic levels, intestinal flora and host metabolism were perturbed after TDEP administration. The disturbance of bile acid metabolism was the most significant metabolic pathway, with secondary bile acids increasing while conjugated bile acids decreased. OA treatment can improve the disorder of intestinal flora and metabolic bile acid spectrum. Further correlation analysis screened out that Escherichia-Shigella, Phascolarctobacterium, Acetatifactor, and Akkermansia were closely related to the bile acid metabolic disorder. In conclusion, oleanolic acid could prevent hepatorenal toxicity induced by EP by regulating bile acids metabolic disorder via intestinal flora improvement.

10.
Analyst ; 147(21): 4739-4751, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36155672

RESUMO

Natural products have been a key source of drug lead discovery. However, their identification has long been a challenge even with the state-of-the-art analysis technologies like high-resolution mass spectrometry (MS) due to their complexity. Emerging in silico chemical structure prediction tools have provided time-saving and highly efficient approaches for identification of these complex samples. Nevertheless, the interpretation of these MS annotations into key supporting evidence towards specific questions is still a bottleneck in medicinal and biological fields. Here we present a deep clustering-based MS data visualization strategy (MCnebula), integrated with the influential open-source automatic MS annotation platform SIRIUS and in vivo and in vitro methods, to screen and validate potential lead compounds from natural products. MCnebula could provide multi-layer clustering profiles with chemical ontologies and comparative analysis of differential treatments. Plantaginis Semen (PS) is commonly used for treating kidney disease and usually stir-fried with salt water to enhance its anti-renal fibrosis effect, but the reason behind this remains unclear. Taking PS as an example, we comprehensively identified and compared the raw and processed PS extracts with SIRIUS-MCnebula, and screened potential anti-renal fibrotic lead compounds using weighted fold change analysis. Eighty-nine components were identified in PS with isoacteoside, calceolarioside B, 2'-acetylacteoside, and plantainoside D being screened and validated to treat renal fibrosis. The novel developed mass spectral data visualization strategy combined with biological function investigation and validation workflow could not only accelerate the discovery of lead compounds from medicinal natural products, but also shed new light on the traditional processing theory.


Assuntos
Produtos Biológicos , Nefropatias , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Visualização de Dados , Chumbo , Análise por Conglomerados , Fibrose , Água
11.
Front Public Health ; 10: 884846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655452

RESUMO

Background: Posaconazole is confirmed to be more effective for preventing invasive fungal infections (IFIs) than first-generation triazoles (fluconazole and itraconazole), but its economic value has not been comprehensively evaluated in China. This study compared the cost-effectiveness of these two antifungal prophylaxis regimens in hematological-malignancy patients at high risk for IFIs from the Chinese healthcare perspective. Methods: A hybrid decision tree and Markov model were built using published data to estimate the total costs and quality-adjusted life-years (QALYs) of antifungal prophylaxis with posaconazole oral suspension and first-generation triazoles. Regimens with an incremental cost-effectiveness ratio (ICER) lower than the threshold of willingness to pay (WTP) were considered cost-effective. One-way and probabilistic sensitivity analyses were performed to assess model robustness. The regional imbalance of economic development and the tablet formulation of posaconazole were considered in the scenario analyses. Results: In the base-case analysis, posaconazole oral suspension provided an additional 0.109 QALYs at an incremental cost of $954.7, yielding an ICER of $8,784.4/QALY, below the national WTP threshold of $31,315/QALY. One-way and probabilistic sensitivity analyses showed that the results were robust. Scenario analyses showed that the base-case ICER was consistently below the WTP thresholds of all 31 Chinese provinces, with the likelihood of posaconazole being cost-effectiveness ranging from 78.1 to 99.0%. When the posaconazole oral suspension was replaced by the tablet formulation, the ICER increased to $29,214.1/QALY, still below the national WTP threshold and WTP thresholds of 12 provinces. Conclusions: Posaconazole oral suspension is a highly cost-effective regimen for preventing IFI in high-risk hematological-malignancy patients from the Chinese healthcare perspective. Posaconazole tablets may also be considered in some high-income regions of China.


Assuntos
Neoplasias Hematológicas , Infecções Fúngicas Invasivas , Micoses , Antifúngicos/uso terapêutico , Análise Custo-Benefício , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Infecções Fúngicas Invasivas/tratamento farmacológico , Infecções Fúngicas Invasivas/prevenção & controle , Micoses/tratamento farmacológico , Micoses/prevenção & controle , Comprimidos , Triazóis/uso terapêutico
12.
Front Nutr ; 9: 807071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592634

RESUMO

Cornus officinalis, a kind of edible herbal medicine, has been widely used in the protection of liver and kidney due to its medicinal and nutritional effect. Its anti-inflammatory, anti-tumor, and anti-oxidant activities can be enhanced by wine-steamed (WS) processing. Based on the activations of hepatic stellate cells-T6 (HSC-T6) and HK-2, our study used single-factor plus orthogonal design to investigate the anti-fibrosis of C. officinalis processed with steamed (S), high-pressure steamed (HPS), WS, high-pressure wine-steamed (HPWS), wine-dipped (WD), and wine-fried (WF). The chemical constituents in processed C. officinalis with higher anti-fibrotic activities were detected by ultra-high performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Results showed that C. officinalis with HPWS significantly inhibited the activations of HSC-T6 and HK-2. Moreover, compounds in C. officinalis with HPWS were obtained via UHPLC-Q-TOF-MS/MS, indicating that 27 components were changed compared with raw C. officinalis. These results demonstrated that HPWS is the optimal processing technology for anti-fibrosis of C. officinalis.

13.
Front Pharmacol ; 13: 863403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431951

RESUMO

Allergic asthma is a common respiratory inflammation disease. The crude Radix Paeoniae Alba (RPA) and its processed products have been used frequently as antipyretic and anti-inflammatory agents in traditional medicine. To evaluate the effect of honey and bran processing, different fractions of RPA were used for treating anti-allergic asthma in the ovalbumin (OVA)-induced mice model, and then, the most effective fraction of RPA and stir-frying Radix Paeoniae Alba with honey and bran (FRPA) for treating anti-allergic asthma were compared mutually for pharmacological effects. The results showed that the treatment of the dichloromethane fraction of RPA significantly improved the pathological condition of lung tissues, decreased the number of eosinophils and other cells in bronchoalveolar lavage fluid (BALF), and the increased the expression of various inflammatory factors. Furthermore, the study discovered that the lung pathological conditions, compared with the high dose of dichloromethane RPA fraction, could be ameliorated by high dose of dichloromethane FRPA fraction treatment. Moreover, the expression of inflammatory factors and the phosphorylation of the PI3K/AKT signaling pathway could be diminished by FRPA. Finally, the contents of compounds with a significant difference in the FRPA dichloromethane fraction were paeoniflorin, ethyl gallate, pentagalloylglucose, galloylpaeoniflorin, and others by UPLC/Q-TOF-MS analysis. These findings suggest that the dichloromethane fraction of FRPA has an enhancement effect on anti-allergic asthma and provide the experimental basis for exploring the processed mechanism of RPA.

14.
Front Pharmacol ; 13: 803855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295336

RESUMO

Tetradium ruticarpum (TR) is widely used in Asia to treat gastrointestinal disorders and pain. Stir-frying with licorice aqueous extract is a traditional processing procedure of TR formed in a long-term practice and performed before clinical application, and believed to reduce TR's toxicity. However, its toxicity and possible toxicity attenuation approach are yet to be well investigated. Subacute toxicity and metabolomics studies were conducted to help understand the toxicity of TR. The subacute toxicity assessment indicated that 3 fold of the recommended therapeutic dose of TR did not show obvious subacute toxicity in rats. Although an extremely high dose (i.e., 60 fold of the recommended dose) may cause toxicity in rats, it reversed to normal after 2 weeks of recovery. Hepatocellular injury was the major toxic phenotype of TR-induced liver damage, indicating as aspartate aminotransferase (AST) and liver index increasing, with histopathologic findings as local hepatocyte necrosis, focal inflammatory cell infiltration, slightly bile duct hyperplasia, and partial hepatocyte vacuolation. Moreover, we evaluated the impact of processing in toxicity. TR processed with licorice could effectively reduce drug-induced toxicity, which is a valuable step in TR pretreatment before clinical application. Metabolomics profiling revealed that primary bile acid biosynthesis, steroid biosynthesis, and arachidonic acid metabolism were mainly involved in profiling the toxicity metabolic regulatory network. The processing procedure could back-regulate these three pathways, and may be in an Aryl hydrocarbon Receptor (AhR) dependent manner to alleviate the metabolic perturbations induced by TR. 7α-hydroxycholesterol, calcitriol, and taurocholic acid were screened and validated as the toxicity biomarkers of TR for potential clinical translation. Overall, the extensive subacute toxicity evaluation and metabolomic analysis would not only expand knowledge of the toxicity mechanisms of TR, but also provide scientific insight of traditional processing theory, and support clinical rational use of TR.

15.
Pharmacol Ther ; 229: 107983, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480962

RESUMO

Fibrosis, which is characterized by excessive extracellular matrix (ECM) deposition, is a wound-healing response to organ injury and may promote cancer and failure in various organs, such as the heart, liver, lung, and kidney. Aging associated with oxidative stress and inflammation exacerbates cellular dysfunction, tissue failure, and body function disorders, all of which are closely related to fibrosis. Sirtuin-1 (SIRT1) is a class III histone deacetylase that regulates growth, transcription, aging, and metabolism in various organs. This protein is downregulated in organ injury and fibrosis associated with aging. Its expression and distribution change with age in different organs and play critical roles in tissue oxidative stress and inflammation. This review first described the background on fibrosis and regulatory functions of SIRT1. Second, we summarized the relationships of SIRT1 with other proteins and its protective action during fibrosis in the heart, liver, lung and kidney. Third, the activation of SIRT1 in therapies of tissue fibrosis, especially in liver fibrosis and aging-related tissue injury, was analyzed. In conclusion, SIRT1 targeting may be a new therapeutic strategy in fibrosis.


Assuntos
Envelhecimento , Sirtuína 1 , Envelhecimento/metabolismo , Animais , Fibrose , Humanos , Rim/metabolismo , Estresse Oxidativo , Sirtuína 1/metabolismo
16.
Mycoses ; 65(2): 152-163, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882852

RESUMO

BACKGROUND: An increasing number of cases of invasive pulmonary aspergillosis (IPA) complicating influenza have been described. We performed a meta-analysis to estimate the incidence, risk factors and outcomes of IPA in patients with influenza. METHODS: A systematic search was conducted in the PubMed, EMBASE and Cochrane Library databases from their inception to 31 August 2021 for eligible studies. Data on the incidence and risk factors of and mortality due to IPA in influenza patients were pooled using a random-effects model. Sensitivity analyses restricted to severe influenza requiring intensive care unit (ICU) support and multiple subgroup analyses were performed. RESULTS: Fourteen studies involving 6024 hospitalised patients with influenza were included. IPA was estimated to occur in 10% of influenza patients, with a mortality rate of 52%. Similar incidence (11%) and mortality (54%) estimates for IPA were observed in the sensitivity analysis including severe cases requiring ICU support. Subgroup analysis by geographical location showed a similar IPA rate between European (10%) and non-European (11%) studies. The IPA rate in the subset of nine studies using the modified AspICU criteria was 13%. Most subgroup analyses showed ≥50% mortality in IPA patients. Several predictors for IPA susceptibility were identified, including male sex, smoking history, chronic lung disease, influenza A (H1N1), severe conditions requiring supportive therapy, corticosteroid use before admission, solid organ transplant and haematological malignancy. CONCLUSIONS: The IPA is common in individuals with severe influenza, and the prognosis is particularly poor. Influenza patients, especially those with high-risk factors, should be thoroughly screened for IPA.


Assuntos
Influenza Humana , Aspergilose Pulmonar Invasiva , Humanos , Incidência , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Aspergilose Pulmonar Invasiva/epidemiologia , Aspergilose Pulmonar Invasiva/mortalidade , Estudos Retrospectivos , Fatores de Risco
17.
Pharmacol Res Perspect ; 9(5): e00765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523246

RESUMO

Gut microbiota disorder will lead to intestinal damage. This study evaluated the influence of total diterpenoids extracted from Euphorbia pekinensis (TDEP) on gut microbiota and intestinal mucosal barrier after long-term administration, and the correlations between gut microbiota and intestinal mucosal barrier were analysed by Spearman correlation analysis. Mice were randomly divided to control group, TDEP groups (4, 8, 16 mg/kg), TDEP (16 mg/kg) + antibiotic group. Two weeks after intragastric administration, inflammatory factors (TNF-α, IL-6, IL-1ß) and LPS in serum, short chain fatty acids (SCFAs) in feces were tested by Enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. The expression of tight junction (TJ) protein in colon was measured by western blotting. Furthermore, the effects of TDEP on gut microbiota community in mice have been investigated by 16SrDNA high-throughput sequencing. The results showed TDEP significantly increased the levels of inflammatory factors in dose-dependent manners, and decreased the expression of TJ protein and SCFAs, and the composition of gut microbiota of mice in TDEP group was significantly different from that of control group. When antibiotics were added, the diversity of gut microbiota was significantly reduced, and the colon injury was more serious. Finally, through correlation analysis, we have found nine key bacteria (Barnesiella, Muribaculaceae_unclassified, Alloprevotella, Candidatus_Arthromitus, Enterorhabdus, Alistipes, Bilophila, Mucispirillum, Ruminiclostridium) that may be related to colon injury caused by TDEP. Taken together, the disturbance of gut microbiota caused by TDEP may aggravate the colon injury, and its possible mechanism may be related to the decrease of SCFAs in feces, disrupted the expression of TJ protein in colon and increasing the contents of inflammatory factors.


Assuntos
Diterpenos/farmacologia , Euphorbia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas de Junções Íntimas/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bacteroidetes , Cromatografia Líquida de Alta Pressão , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Disbiose/metabolismo , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/genética , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
18.
J Exp Bot ; 72(15): 5584-5598, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34037747

RESUMO

Wax synthase (WS) catalyzes the last step in wax ester biosynthesis in green plants. Two unrelated sub-families of WS, including the bifunctional acyltransferase and plant-like WS have been reported, but the latter is largely uncharacterized in microalgae. Here, we functionally characterized a putative plant-like WS (CzWS1) from the emerging model green microalga Chromochloris zofingiensis. Our results showed that plant-like WS evolved under different selection constraints in plants and microalgae, with positive selection likely contributing to functional divergence. Unlike jojoba with high amounts of wax ester in seeds and a highly active WS enzyme, C. zofingiensis has no detectable wax ester but a high abundance of WS transcripts. Co-expression analysis showed that C. zofingiensis WS has different expression correlation with lipid biosynthetic genes from jojoba, and may have a divergent function. In vitro characterization indicated that CzWS1 had diacylglycerol acyltransferase activity along with WS activity, and overexpression of CzWS1 in yeast and Chlamydomonas reinhardtii affected triacylglycerol accumulation. Moreover, biochemical and bioinformatic analyses revealed the relevance of the C-terminal region of CzWS1 in enzyme function. Taken together, our results indicated a functional divergence of plant-like WS in plants and microalgae, and the importance of its C-terminal region in specialization of enzyme function.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Aciltransferases/genética , Diacilglicerol O-Aciltransferase/genética , Triglicerídeos
19.
J Ethnopharmacol ; 264: 113292, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32841697

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The dried and nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T.G. Hartley (TR) have long been used in treating headache and gastrointestinal disorders in oriental medicine. TR is usually processed by stir-frying with licorice extract before use. Although processing procedure is considered as the way to relieve pungent smell, reduce toxicity, and improve efficacy, its effects on TR's toxicity and efficacy and bioactive compound profiles are largely unknown. AIM OF THE STUDY: The purposes of the study are to evaluate the acute toxicity, efficacy and variation of toxic and effective components of TR before and after processing, and to explore the possible mechanism of how the processing procedure affect the quality of TR as a herbal medicine. MATERIALS AND METHODS: Volatile oil, aqueous extract and ethanol extract of raw and processed TR were tested for their acute toxicity, analgesic, and anti-inflammatory effects in mouse models, respectively. To identify potential toxic and effective components, the extracts were analyzed with gas chromatography-mass spectrometry and ultra-performance liquid chromatography - quadrupole time-of-flight mass spectrometry, followed by fold-change-filtering analysis. RESULTS: LD50 and LD5 tests indicated that although the aqueous extract has higher toxicity than volatile oil and ethanol extract, the use of TR is safe under the recommended does. The processing procedure could effectively decrease the toxicity of all three extracts with the largest decrease in volatile oil, which is likely due to the loss of volatile compounds during processing. Analgesic and anti-inflammatory studies suggested that volatile oil and ethanol extract of TR have better efficacy than the aqueous extract and the processing procedure significantly enhanced the efficacy of these two former extracts, whereas processing showed no substantially effects on the bioactivities of aqueous extract. Integrated analysis of animal trial and chromatographic analyses indicated that indole and quinolone type alkaloids, limonoids, amides and 18ß-glycyrrhetinic acid were identified as the potential main contributors of TR's efficacy, whereas hydroxy or acetoxy limonoid derivates and coumarins could be the major causes of toxicity. Moreover, the reduced toxicity and improved efficacy of the processed TR are liked due to the licorice ingredients and altered alkaloids with better solubility. CONCLUSIONS: In summary, the integrated toxicity and efficacy analyses of volatile, aqueous and ethanol extracts of TR indicated that the processing procedure could effectively reduce its acute toxicity in all three extracts and enhance its analgesic and anti-inflammatory effects in volatile and ethanol extracts. The promising candidate compounds related to the toxicity and efficacy of TR were also identified. The results could expand our understanding of the value of the standard processing procedure of TR, be valuable to the quality control of TR manufacturing and administration, as well as support clinical rational and safety applications of this medicinal plant.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Evodia , Testes de Toxicidade Aguda/métodos , Analgésicos/isolamento & purificação , Analgésicos/toxicidade , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/toxicidade , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Distribuição Aleatória , Resultado do Tratamento
20.
Nat Prod Res ; 35(7): 1207-1211, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31315442

RESUMO

Xiaoyaosan is one of the famous formulas treating for liver, spleen and blood deficiency syndrome along Chinese history. Their five main components, paeoniflorin, ferulic acid, glycyrrhizic acid, liquiritin, and atractylenolide I are believed to partly representative of this formula. Ultra performance liquid chromatography method was newly established, UPLC BEH-C18 column (2.1 × 100 mm, 1.7 µm) with acetonitrile - 0.1% phosphate acid gradient elution system, in 0.4 mL/min and the temperature was 30 °C; Detection wavelengths were optimized separately. The five components were linear within their linear range (r ≥ 0.9991), average recovery 97.63%∼102.83%, RSD 1.88%∼4.38%. The newly established method is accurate, rapid, and convenient, with satisfied separation performance to quantify multi-components in formula and preparations of Xiaoyaosan. It will provide a reliable reference for the quality evaluation of both Xiaoyaosan formula and preparations during the process of manufacture, administration and clinical application in the future.


Assuntos
Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/análise , Calibragem , Ácidos Cumáricos/análise , Ácidos Cumáricos/química , Flavanonas/análise , Flavanonas/química , Glucosídeos/análise , Glucosídeos/química , Ácido Glicirrízico/análise , Ácido Glicirrízico/química , Lactonas/análise , Lactonas/química , Monoterpenos/análise , Monoterpenos/química , Compostos Fitoquímicos/química , Reprodutibilidade dos Testes , Sesquiterpenos/análise , Sesquiterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA