Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35187, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39161809

RESUMO

Ionic conductive hydrogel has recently garnered significant research attention due to its potential applications in the field of wearable and flexible electronics. Nonetheless, the integration of multifunctional and synergistic advantages, including reliable electronic properties, high swelling capacity, exceptional mechanical characteristics, and self-adhesive properties, presents an ongoing challenge. In this study, we have developed an ionic conductive hydrogel through the co-polymerization of 4-Acryloylmorpholine (ACMO) and sodium acrylate using UV curing technology. The hydrogel exhibits excellent mechanical properties, high conductivity, superior swelling capacity, and remarkable self-adhesive attributes. The hydrogel serves as a highly sensitive strain sensor, enabling precise monitoring of both substantial and subtle human motions. Furthermore, the hydrogel demonstrates the capability to adhere to human skin, functioning as a human-machine interface for the detection of physiological signals, including electromyogram (EMG) signals, with low interfacial impedance. This work is anticipated to yield a new class of stretchable and conductive materials with diverse potential applications, ranging from flexible sensors and wearable bio-electronics to contributions in the field of artificial intelligence.

2.
Nanoscale ; 13(3): 1529-1565, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33432962

RESUMO

The past few decades have witnessed growing research interest in developing powerful nanofabrication technologies for three-dimensional (3D) structures and devices to achieve nano-scale and nano-precision manufacturing. Among the various fabrication techniques, focused ion beam (FIB) nanofabrication has been established as a well-suited and promising technique in nearly all fields of nanotechnology for the fabrication of 3D nanostructures and devices because of increasing demands from industry and research. In this article, a series of FIB nanofabrication factors related to the fabrication of 3D nanostructures and devices, including mechanisms, instruments, processes, and typical applications of FIB nanofabrication, are systematically summarized and analyzed in detail. Additionally, current challenges and future development trends of FIB nanofabrication in this field are also given. This work intends to provide guidance for practitioners, researchers, or engineers who wish to learn more about the FIB nanofabrication technology that is driving the revolution in 3D nanostructures and devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA