Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 6464-6474, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823901

RESUMO

An optimized remote material detection scheme based on the laser filament-induced plasma spectroscopy and light detection and ranging (FIPS-LIDAR) is proposed in this work. The elemental composition and concentration of aerosol are measured by FIPS-LIDAR. By focusing the femtosecond laser with a large aperture (Φ41 cm) concave mirror and coaxial fluorescence collection scheme, the remote detection of aerosol in air at µg/m3 level has been realized at a distance of 30 m. The limit of detection for Na+ in aerosol droplets is 8 ppm (3 µg/m3 in air), which is the lowest detection limit that has been reported using millijoule femtosecond laser pulse (4.4 mJ). Furthermore, using spectral preprocessing and optimization of the proposed significance of peak (SOP) algorithm, feature peak signals are extracted from weak signals and the limit of detection can be further decreased to 1.4 µg/m3.

2.
Front Plant Sci ; 11: 888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670325

RESUMO

The high background value of cadmium (Cd) in the Panax notoginseng planting soil is the main reason for the Cd content in P. notoginseng exceeding the limit standards. The main goal of this study was to reveal the mechanism by which potassium (K) reduces Cd accumulation in P. notoginseng from the perspective of the influences of soil microbial communities on soil pH, total organic matter (TOM) and cation exchange capacity (CEC). Pot experiments were conducted to study the effects of different types and amounts of applied K on the Cd content in P. notoginseng, and on the soil pH, TOM, CEC, and bioavailable Cd (bio-Cd) content in soil. Field experiments were conducted to study the effects of K2SO4 fertilizer on the microbial community, and its correlations with the soil pH, TOM and CEC were analyzed. A moderate application of K2SO4 (0.6 g⋅kg-1) was found to be the most optimal treatment for the reduction of Cd in the pot experiments. The field experiments proved that K fertilizer (K2SO4) alleviated the decreases in pH, TOM and CEC, and reduced the content of bio-Cd in the soil. The application of K fertilizer inhibited the growth of Acidobacteria, but the abundances of Mortierellomycota, Proteobacteria and Bacteroidetes were promoted. The relative abundances of Acidobacteria and Proteobacteria in the soil bacteria exhibited significant negative and positive correlations with pH and CEC, respectively. In contrast, the relative abundance of Mortierellomycota was found to be positively correlated with the pH, TOM and CEC. The bio-Cd content was also found to be positively correlated with the relative abundance of Acidobacteriia but negatively correlated with the relative abundances of Proteobacteria and Mortierellomycota. The application of K fertilizer inhibited the abundance of Acidobacteria, which alleviated the acidification of the soil pH and CEC, and promoted increase in the abundances of Mortierellomycota, Proteobacteria and Bacteroidetes, which ultimately increased the soil TOM and CEC. Soil microorganisms were found to mitigated decreases in the soil pH, TOM, and CEC and reduced the bio-Cd content in the soil, which significantly reduced the accumulation of Cd in P. notoginseng.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA