Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(3): 550-553, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300056

RESUMO

Femtosecond laser filament-induced plasma spectroscopy (FIPS) demonstrates great potential in remote sensing for identifying atmospheric pollutant molecules. Due to the widespread aerosols in the atmosphere, remote detection based on FIPS would be affected by both the excitation and the propagation of fingerprint fluorescence, which still remain elusive. Here the physical model of filament-induced aerosol fluorescence is established to reveal the combined effect of Mie scattering and amplification spontaneous emission, which is subsequently proven by experimental results, the dependence of the backward fluorescence on the interaction length between filaments and aerosols. These findings provide an insight into the complicated aerosol effect in the overall physical process of FIPS including propagation, excitation, and emission, paving the way to its practical application in atmospheric remote sensing.

2.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896458

RESUMO

Air lasers induced by femtosecond laser filaments play an important role in remote sensing applications. Few studies have been dedicated to the spatial distribution of external-seeded air laser radiation in the laser filament based on the numerical simulation method, which can pave the way to understanding the mechanism of the external-seeded air lasing process during filamentation. In this study, numerical simulations of the propagation of an air laser seeded by an external plane wave with a wavelength of 391 nm during femtosecond laser filamentation were performed. The results indicated that the air laser's beam intensity distribution varies from a ring pattern to a donut pattern when the filament length and nitrogen ion density are raised as a result of the defocusing and lasing effects of the filament plasma. Here, the ring pattern is formed by several thin rings, while the donut pattern refers to a notably thicker, ring-like structure. In addition, it has been demonstrated that the air laser's beam power would increase exponentially versus the filament length and the nitrogen ion density. The knowledge about the angular distribution of air lasing could be important for optimizing the detection geometry of the LIDAR setup, including the view angle and the size of the collecting optical component.

3.
Opt Express ; 31(17): 28586-28595, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710909

RESUMO

In this work, sub-ppb aerosol detection is achieved by femtosecond laser filament with a single pulse energy of 4 mJ at a distance of 30 m. A concave mirror with an open aperture of 41.4 cm is employed in an off-axis optical system to focus the femtosecond laser beam and collect the fluorescence of NaCl aerosol. The simulation and experimental results show that the astigmatism can be greatly reduced when femtosecond laser beam is incident non-symmetrically on the concave mirror. Compared with the case that femtosecond laser strikes at the center of the concave mirror, the intensity of acoustic signal emitted from the optical filament is increased by 69.5 times, and the detection of limit of sodium element in aerosol is reduced by 86%, which is down to 0.32 ppb. The improved excitation scheme in this work utilizes the nonsymmetrical beam spot on the concave mirror to compensate the non-symmetry induced by the off-axis setup, reducing the astigmatism of the focusing laser beam and decreasing the sodium chloride aerosol's detection of limit.

4.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808489

RESUMO

The filamentation process under atmospheric turbulence is critical to its remote-sensing application. The effects of turbulence intensity and location on the spatial distribution of femtosecond laser filaments in the air were studied. The experimental results show that the nonlinear effect of the filament can restrain the beam wander. When the turbulence intensity was 3.31×10−13 cm−2/3, the mean deviation of the wander of the filament center was only 27% of that of the linear transmitted beam. The change in turbulence location would lead to a change in the standard deviation of the beam centroid drift. Results also show that the filament length would be shortened, and that the filament would end up earlier in a turbulent environment. Since the filamentation-based LIDAR has been highly expected as an evolution multitrace pollutant remote-sensing technique, the study promotes our understanding of how turbulence influences filamentation and advances atmospheric remote sensing by applying a filament.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA