Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775312

RESUMO

The in situ scattering and transmissometry laser (LISST-100X), equipped with an acoustic wave and current (AWAC) meter and conductivity, temperature, and depth (CTD) instruments over the seabed in the East China Sea, was used to monitor the variation in suspended particles in the bottom sea layer, including particle size distribution (PSD) and volume concentration. The power law approximation was tested to describe the variability in PSD based on the field data. The results show that the power law was robust in processing continuous data, accompanied with the same optimal reference particle size (~63 µm) and little change in the corresponding exponent (~3.4) in both periods. Suspended particles were divided into three types: macroflocs (>133 µm), microflocs (36-133 µm), and single grains (<36 µm). Particle sizes were coarse during the two seasons, with macroflocs representing more than 60% of all the suspended particles, especially in February, when the particle size spectra were usually open-ended. Results from the harmonic analysis method indicate that tidal-induced resuspension and advection are the major reasons for the diurnal dynamics of sediments. Due to the tidal asymmetry in the region, we only found one mode in volume concentration at the moment of maximum velocity. However, the ratios of macroflocs were bimodal, with maximum floods and ebbs in one tidal cycle in February, when the higher mode at the maximum ebbs may be contributed to by the flocculation of finer particles considering the decreasing ratios of finer particles. Due to the enhanced stratification and the clean barrier built up by the Taiwan Warm Current in the southeast corner, the significant daily variation in suspended particles observed in February weakened in September. The influence of waves was uncertain, although the correlation coefficient between significant wave height and volume concentration was about 64% in February.

2.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888303

RESUMO

In the shallow-water environment, underwater images often present problems like color deviation and low contrast due to light absorption and scattering in the water body, but for deep-sea images, additional problems like uneven brightness and regional color shift can also exist, due to the use of chromatic and inhomogeneous artificial lighting devices. Since the latter situation is rarely studied in the field of underwater image enhancement, we propose a new model to include it in the analysis of underwater image degradation. Based on the theoretical study of the new model, a comprehensive method for enhancing underwater images under different illumination conditions is proposed in this paper. The proposed method is composed of two modules: color-tone correction and fusion-based descattering. In the first module, the regional or full-extent color deviation caused by different types of incident light is corrected via frequency-based color-tone estimation. And in the second module, the residual low contrast and pixel-wise color shift problems are handled by combining the descattering results under the assumption of different states of the image. The proposed method is experimented on laboratory and open-water images of different depths and illumination states. Qualitative and quantitative evaluation results demonstrate that the proposed method outperforms many other methods in enhancing the quality of different types of underwater images, and is especially effective in improving the color accuracy and information content in badly-illuminated regions of underwater images with non-uniform illumination, such as deep-sea images.

3.
Sensors (Basel) ; 18(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501092

RESUMO

The suspended particulate matter (SPM) in Changjiang Estuary is characterized by a high concentration of significant diurnal dynamics. With a higher temporal resolution (eight images obtained per day), Geostationary Ocean Color Imager (GOCI) was selected as the primary remote sensor for the dynamics monitoring in this paper, instead of other satellite sensor working in polar orbit. Based on the characteristics of the field spectra measured in the estuary, an empirical model was established with the band ratio of Rrs745 divided by Rrs490 and proven effective in Suspended Particulate Matter (SPM) estimation (R² = 0.9376, RMSE = 89.32 mg/L). While, Validation results showed that the model performed better in coastal turbid waters than offshore clear waters with higher chlorophyll-a concentration, stressing the importance of partitioning SPM into its major components and doing separate analysis. The hourly observations from GOCI showed that the diurnal variation magnitudes exhibited clear regional characteristics, with a maximum in the turbidity belt near the mouth and a minimum in the offshore deeper areas. In addition, comparing the monthly averaged SPM distribution with the amount of sediment discharged into the estuary, the variation in estuarine turbidity maximum zone is more likely contributed by the sediments resuspended from the sea bed that has already accumulated in the estuarine delta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA