Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891318

RESUMO

Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.

2.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068920

RESUMO

Upland cotton is the fifth-largest oil crop in the world, with an average supply of nearly 20% of vegetable oil production. Cottonseed oil is also an ideal alternative raw material to be efficiently converted into biodiesel. However, the improvement in kernel oil content (KOC) of cottonseed has not received sufficient attention from researchers for a long time, due to the fact that the main product of cotton planting is fiber. Previous studies have tagged QTLs and identified individual candidate genes that regulate KOC of cottonseed. The regulatory mechanism of oil metabolism and accumulation of cottonseed are still elusive. In the current study, two high-density genetic maps (HDGMs), which were constructed based on a recombinant inbred line (RIL) population consisting of 231 individuals, were used to identify KOC QTLs. A total of forty-three stable QTLs were detected via these two HDGM strategies. Bioinformatic analysis of all the genes harbored in the marker intervals of the stable QTLs revealed that a total of fifty-one genes were involved in the pathways related to lipid biosynthesis. Functional analysis via coexpression network and RNA-seq revealed that the hub genes in the co-expression network that also catalyze the key steps of fatty acid synthesis, lipid metabolism and oil body formation pathways (ACX4, LACS4, KCR1, and SQD1) could jointly orchestrate oil accumulation in cottonseed. This study will strengthen our understanding of oil metabolism and accumulation in cottonseed and contribute to KOC improvement in cottonseed in the future, enhancing the security and stability of worldwide food supply.


Assuntos
Óleo de Sementes de Algodão , Locos de Características Quantitativas , Humanos , Óleo de Sementes de Algodão/metabolismo , Óleos de Plantas , Gossypium/genética , Gossypium/metabolismo , Fibra de Algodão
3.
Biomolecules ; 13(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37759747

RESUMO

Verticillium wilt is a fungal disease in upland cotton and exerts a significant effect on growth and potential productivity. This disease is mainly caused by V. dahliae Kleb. Ethylene response factor (ERF) is one of the superfamilies of transcription factors that is involved in the development and environmental adaption of crops. A total of 30 ERF.B4 group members were detected in upland cotton and divided into 6 subgroups. Gene structures, conserved motifs, and domain analysis revealed that members in each subgroup are highly conserved. Further, the 30 GhERF.B4 group members were distributed on 18 chromosomes, and 36 gene synteny relationships were found among them. GhERF.B4 genes were ubiquitously expressed in various tissues and developmental stages of cotton. Amongst them, GhERF.B4-15D was predominantly expressed in roots, and its expression was induced by V. dahliae infection. In addition, GhERF.B4-15D responded to methyl jasmonate (MeJA), methyl salicylate (MeSA), and ethylene (ET) phytohormones. It was also found that the V. dahliae resistance was enhanced due to overexpression of GhERF.B4-15D in Arabidopsis thaliana. On the contrary, interference of GhERF.B4-15D by virus-induced gene silencing (VIGS) technology decreased the V. dahliae resistance level in upland cotton. The subcellular localization experiment showed that GhERF.B4-15D was located in the nucleus. Yeast two-hybrid (Y2H) and luciferase complementation (LUC) approaches demonstrated that GhERF.B4-15D interacted with GhDREB1B. Additionally, the V. dahliae resistance was significantly decreased in GhDREB1B knockdowns. Our results showed that GhERF.B4-15D plays a role during V. dahliae infection in cotton.

4.
Front Plant Sci ; 14: 1189490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719229

RESUMO

Introduction: Upland cotton (Gossypium hirsutum) is the main source of natural fiber in the global textile industry, and thus its fiber quality and yield are important parameters. In this study, comparative transcriptomics was used to analyze differentially expressed genes (DEGs) due to its ability to effectively screen candidate genes during the developmental stages of cotton fiber. However, research using this method is limited, particularly on fiber development. The aim of this study was to uncover the molecular mechanisms underlying the whole period of fiber development and the differences in transcriptional levels. Methods: Comparative transcriptomes are used to analyze transcriptome data and to screen for differentially expressed genes. STEM and WGCNA were used to screen for key genes involved in fiber development. qRT-PCR was performed to verify gene expression of selected DEGs and hub genes. Results: Two accessions of upland cotton with extreme phenotypic differences, namely EZ60 and ZR014121, were used to carry out RNA sequencing (RNA-seq) on fiber samples from different fiber development stages. The results identified 704, 376, 141, 269, 761, and 586 genes that were upregulated, and 1,052, 476, 355, 259, 702, and 847 genes that were downregulated at 0, 5, 10, 15, 20, and 25 days post anthesis, respectively. Similar expression patterns of DEGs were monitored using short time-series expression miner (STEM) analysis, and associated pathways of DEGs within profiles were investigated. In addition, weighted gene co-expression network analysis (WGCNA) identified five key modules in fiber development and screened 20 hub genes involved in the development of fibers. Discussion: Through the annotation of the genes, it was found that the excessive expression of resistance-related genes in the early fiber development stages affects the fiber yield, whereas the sustained expression of cell elongation-related genes is critical for long fibers. This study provides new information that can be used to improve fibers in newly developed upland cotton genotypes.

5.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239883

RESUMO

Cotton (Gossypium spp.) is the fifth largest oil crop in the world, and cottonseed provides abundant vegetable oil resources and industrial bioenergy fuels for people; therefore, it is of practical significance to increase the oil content of cotton seeds for improving the oil yield and economic benefits of planting cotton. Long-chain acyl-coenzyme A (CoA) synthetase (LACS) capable of catalyzing the formation of acyl-CoAs from free fatty acids has been proven to significantly participate in lipid metabolism, of which whole-genome identification and functional characterization of the gene family have not yet been comprehensively analyzed in cotton. In this study, a total of sixty-five LACS genes were confirmed in two diploid and two tetraploid Gossypium species, which were divided into six subgroups based on phylogenetic relationships with twenty-one other plants. An analysis of protein motif and genomic organizations displayed structural and functional conservation within the same group but diverged among the different group. Gene duplication relationship analysis illustrates the LACS gene family in large scale expansion through WGDs/segmental duplications. The overall Ka/Ks ratio indicated the intense purifying selection of LACS genes in four cotton species during evolution. The LACS genes promoter elements contain numerous light response cis-elements associated with fatty acids synthesis and catabolism. In addition, the expression of almost all GhLACS genes in high seed oil were higher compared to those in low seed oil. We proposed LACS gene models and shed light on their functional roles in lipid metabolism, demonstrating their engineering potential for modulating TAG synthesis in cotton, and the genetic engineering of cottonseed oil provides a theoretical basis.


Assuntos
Genoma de Planta , Gossypium , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo
6.
BMC Plant Biol ; 23(1): 179, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020180

RESUMO

BACKGROUND: Upland cotton (Gossypium hirsutum L.) is the most economically important species in the cotton genus (Gossypium spp.). Enhancing the cotton yield is a major goal in cotton breeding programs. Lint percentage (LP) and boll weight (BW) are the two most important components of cotton lint yield. The identification of stable and effective quantitative trait loci (QTLs) will aid the molecular breeding of cotton cultivars with high yield. RESULTS: Genotyping by target sequencing (GBTS) and genome-wide association study (GWAS) with 3VmrMLM were used to identify LP and BW related QTLs from two recombinant inbred line (RIL) populations derived from high lint yield and fiber quality lines (ZR014121, CCRI60 and EZ60). The average call rate of a single locus was 94.35%, and the average call rate of an individual was 92.10% in GBTS. A total of 100 QTLs were identified; 22 of them were overlapping with the reported QTLs, and 78 were novel QTLs. Of the 100 QTLs, 51 QTLs were for LP, and they explained 0.29-9.96% of the phenotypic variation; 49 QTLs were for BW, and they explained 0.41-6.31% of the phenotypic variation. One QTL (qBW-E-A10-1, qBW-C-A10-1) was identified in both populations. Six key QTLs were identified in multiple-environments; three were for LP, and three were for BW. A total of 108 candidate genes were identified in the regions of the six key QTLs. Several candidate genes were positively related to the developments of LP and BW, such as genes involved in gene transcription, protein synthesis, calcium signaling, carbon metabolism, and biosynthesis of secondary metabolites. Seven major candidate genes were predicted to form a co-expression network. Six significantly highly expressed candidate genes of the six QTLs after anthesis were the key genes regulating LP and BW and affecting cotton yield formation. CONCLUSIONS: A total of 100 stable QTLs for LP and BW in upland cotton were identified in this study; these QTLs could be used in cotton molecular breeding programs. Putative candidate genes of the six key QTLs were identified; this result provided clues for future studies on the mechanisms of LP and BW developments.


Assuntos
Gossypium , Mapeamento Cromossômico , Fibra de Algodão , Estudo de Associação Genômica Ampla , Gossypium/genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas
7.
Front Plant Sci ; 14: 1127760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008510

RESUMO

Cotton is an important fiber crop. The cotton fiber is an extremely long trichome that develops from the epidermis of an ovule. The trichome is a general and multi-function plant organ, and trichome birefringence-like (TBL) genes are related to trichome development. At the genome-wide scale, we identified TBLs in four cotton species, comprising two cultivated tetraploids (Gossypium hirsutum and G. barbadense) and two ancestral diploids (G. arboreum and G. raimondii). Phylogenetic analysis showed that the TBL genes clustered into six groups. We focused on GH_D02G1759 in group IV because it was located in a lint percentage-related quantitative trait locus. In addition, we used transcriptome profiling to characterize the role of TBLs in group IV in fiber development. The overexpression of GH_D02G1759 in Arabidopsis thaliana resulted in more trichomes on the stems, thereby confirming its function in fiber development. Moreover, the potential interaction network was constructed based on the co-expression network, and it was found that GH_D02G1759 may interact with several genes to regulate fiber development. These findings expand our knowledge of TBL family members and provide new insights for cotton molecular breeding.

8.
Theor Appl Genet ; 136(3): 48, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912959

RESUMO

KEY MESSAGE: The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.


Assuntos
Gossypium , Locos de Características Quantitativas , Humanos , Gossypium/genética , Mapeamento Cromossômico/métodos , Fenótipo , Melhoramento Vegetal , Fibra de Algodão , Estudos de Associação Genética
9.
Genes (Basel) ; 14(2)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36833403

RESUMO

Polyphenol oxidases (PPOs) are copper-binding metalloproteinases encoded by nuclear genes, ubiquitously existing in the plastids of microorganisms, plants, and animals. As one of the important defense enzymes, PPOs have been reported to participate in the resistant processes that respond to diseases and insect pests in multiple plant species. However, PPO gene identification and characterization in cotton and their expression patterns under Verticillium wilt (VW) treatment have not been clearly studied. In this study, 7, 8, 14, and 16 PPO genes were separately identified from Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively, which were distributed within 23 chromosomes, though mainly gathered in chromosome 6. The phylogenetic tree manifested that all the PPOs from four cotton species and 14 other plants were divided into seven groups, and the analyses of the conserved motifs and nucleotide sequences showed highly similar characteristics of the gene structure and domains in the cotton PPO genes. The dramatically expressed differences were observed among the different organs at various stages of growth and development or under the diverse stresses referred to in the published RNA-seq data. Quantitative real-time PCR (qRT-PCR) experiments were also performed on the GhPPO genes in the roots, stems, and leaves of VW-resistant MBI8255 and VW-susceptible CCRI36 infected with Verticillium dahliae V991, proving the strong correlation between PPO activity and VW resistance. A comprehensive analysis conducted on cotton PPO genes contributes to the screening of the candidate genes for subsequent biological function studies, which is also of great significance for the in-depth understanding of the molecular genetic basis of cotton resistance to VW.


Assuntos
Gossypium , Verticillium , Gossypium/genética , Verticillium/genética , Filogenia , Locos de Características Quantitativas , Genes de Plantas
10.
J Adv Res ; 53: 1-16, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36460274

RESUMO

INTRODUCTION: The simultaneous improvement of fiber quality and yield for cotton is strongly limited by the narrow genetic backgrounds of Gossypium hirsutum (Gh) and the negative genetic correlations among traits. An effective way to overcome the bottlenecks is to introgress the favorable alleles of Gossypium barbadense (Gb) for fiber quality into Gh with high yield. OBJECTIVES: This study was to identify superior loci for the improvement of fiber quality and yield. METHODS: Two sets of chromosome segment substitution lines (CSSLs) were generated by crossing Hai1 (Gb, donor-parent) with cultivar CCRI36 (Gh) and CCRI45 (Gh) as genetic backgrounds, and cultivated in 6 and 8 environments, respectively. The kmer genotyping strategy was improved and applied to the population genetic analysis of 743 genomic sequencing data. A progeny segregating population was constructed to validate genetic effects of the candidate loci. RESULTS: A total of 68,912 and 83,352 genome-wide introgressed kmers were identified in the CCRI36 and CCRI45 populations, respectively. Over 90 % introgressions were homologous exchanges and about 21 % were reverse insertions. In total, 291 major introgressed segments were identified with stable genetic effects, of which 66(22.98 %), 64(21.99 %), 35(12.03 %), 31(10.65 %) and 18(6.19 %) were beneficial for the improvement of fiber length (FL), strength (FS), micronaire, lint-percentage (LP) and boll-weight, respectively. Thirty-nine introgression segments were detected with stable favorable additive effects for simultaneous improvement of 2 or more traits in Gh genetic background, including 6 could increase FL/FS and LP. The pyramiding effects of 3 pleiotropic segments (A07:C45Clu-081, D06:C45Clu-218, D02:C45Clu-193) were further validated in the segregating population. CONCLUSION: The combining of genome-wide introgressions and kmer genotyping strategy showed significant advantages in exploring genetic resources. Through the genome-wide comprehensive mining, a total of 11 clusters (segments) were discovered for the stable simultaneous improvement of FL/FS and LP, which should be paid more attention in the future.


Assuntos
Fibra de Algodão , Gossypium , Gossypium/genética , Locos de Características Quantitativas , Cromossomos de Plantas/genética , Cruzamentos Genéticos
11.
Genes (Basel) ; 13(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553581

RESUMO

Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.


Assuntos
Genoma de Planta , Gossypium , Filaminas/genética , Filaminas/metabolismo , Perfilação da Expressão Gênica , Gossypium/genética , Filogenia
12.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012463

RESUMO

As the core of heterosis utilization, cytoplasmic male sterility (CMS) has been widely used in hybrid seed production. Previous studies have shown that CMS is always closely related to the altered programming of mitochondrial genes. To explore candidate CMS genes in cotton (Gossypium hirsutum), sequencing and de novo assembly were performed on the mitochondrial genome of the G. hirsutum CMS line SI3A, with G. harknessii CMS-D2 cytoplasm, and the corresponding G. hirsutum restorer line 0-613-2R. Remarkable variations in genome structure and gene transcripts were detected. The mitochondrial genome of SI3A has three circle molecules, including one main circle and two sub-circles, while 0-613-2R only has one. RNA-seq and RT-qPCR analysis proved that orf606a and orf109a, which have a chimeric structure and transmembrane domain, were highly expressed in abortive anthers of SI3A. In addition, comparative analysis of RNA-seq and full-length transcripts revealed the complex I gene nad4 to be expressed at a lower level in SI3A than in its restorer and that it featured an intron retention splicing pattern. These two novel chimeric ORFs and nad4 are potential candidates that confer CMS character in SI3A. This study provides new insight into the molecular basis of the nuclear-cytoplasmic interaction mechanism, and that putative CMS genes might be important sources for future precise design cross-breeding of cotton.


Assuntos
Genoma Mitocondrial , Gossypium , Citoplasma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Melhoramento Vegetal , Infertilidade das Plantas/genética
13.
Theor Appl Genet ; 135(9): 3223-3235, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904626

RESUMO

KEY MESSAGE: In this study, we present AAQSP as an extension of existing NGS-BSA applications for identifying stable QTLs at high resolution. GhPAP16 and GhIQD14 fine mapped on chromosome D09 of upland cotton are identified as important candidate genes for lint percentage (LP). Bulked segregant analysis combined with next generation sequencing (NGS-BSA) allows rapid identification of genome sequence differences responsible for phenotypic variation. The NGS-BSA approach applied to crops mainly depends on comparing two bulked DNA samples of individuals from an F2 population. Since some F2 individuals still maintain high heterozygosity, heterosis will exert complications in pursuing NGS-BSA in such populations. In addition, the genetic background influences the stability of gene expression in crops, so some QTLs mapped in one segregating population may not be widely applied in crop improvement. The AAQSP (Association Analysis of QTL-seq on Semi-homologous Populations) reported in our study combines the optimized scheme of constructing BSA bulks with NGS-BSA analysis in two (or more) different parental genetic backgrounds for isolating the stable QTLs. With application of AAQSP strategy and construction of a high-density linkage map, we have successfully identified a QTL significantly related to lint percentage (LP) in cultivated upland cotton, followed by map-based cloning to dissect two candidate genes, GhPAP16 and GhIQD14. This study demonstrated that AAQSP can efficiently identify stable QTLs for complex traits of interest, and thus accelerate the genetic improvement of upland cotton and other crop plants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , Mapeamento Cromossômico , Produtos Agrícolas/genética , Patrimônio Genético , Gossypium/genética , Vigor Híbrido , Fenótipo
14.
PeerJ ; 10: e13460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663522

RESUMO

In this study, a total of 66 UDP-glucose pyrophosphorylase (UGP) (EC 2.7.7.9) genes were identified from the genomes of four cotton species, which are the members of Pfam glycosyltransferase family (PF01702) and catalyze the reaction between glucose-1-phosphate and UTP to produce UDPG. The analysis of evolutionary relationship, gene structure, and expression provides the basis for studies on function of UGP genes in cotton. The evolutionary tree and gene structure analysis revealed that the UGP gene family is evolutionarily conserved. Collinearity and Ka/Ks analysis indicated that amplification of UGP genes is due to repetitive crosstalk generating between new family genes, while being under strong selection pressure. The analysis of cis-acting elements exhibited that UGP genes play important role in cotton growth, development, abiotic and hormonal stresses. Six UGP genes that were highly expressed in cotton fiber at 15 DPA were screened by transcriptome data and qRT-PCR analysis. The addition of low concentrations of IAA and GA3 to ovule cultures revealed that energy efficiency promoted the development of ovules and fiber clusters, and qRT-PCR showed that expression of these six UGP genes was differentially increased. These results suggest that the UGP gene may play an important role in fiber development, and provides the opportunity to plant researchers to explore the mechanisms involve in fiber development in cotton.


Assuntos
Perfilação da Expressão Gênica , Gossypium , Gossypium/genética , Fibra de Algodão , Glucose/metabolismo , Difosfato de Uridina/metabolismo
15.
Gene ; 834: 146653, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35680030

RESUMO

OVATE family proteins (OFPs) are plant-specific transcription factors with a conserved OVATE domain. Although OFPs have been reported to regulate many aspects of plant growth and development, little is known about their evolution, structure, and function in fiber development in cotton. In this study, 174 OFPs were identified from four species of Gossypium namely, G. hirsutum, G. barbadense, G. arboreum, and G. raimondii. These OFPs were grouped into 6 sub-families by using phylogenetic analysis, and members within the same sub-family had similar conserved motifs. Chromosomal localization revealed that OFPs are distributed in cotton genome unevenly. Gene structure analysis showed that most of OFPs were intronless. Moreover, Ka/Ks analysis exhibited that OFPs were gone through purifying selection processes during evolution. Multiple cis-acting elements were observed in promoter region of OFPs, which are responsive to light, phytohormone, biotic stresses, growth and developmental related cis-acting elements. In addition, OFPs play important role in fiber and ovule development. In conclusion, this study provides a systematic analysis of cotton OFPs and provides the foundation for further studies on biological functioning of cotton OFPs.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Genoma de Planta , Humanos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Front Genet ; 13: 916867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769995

RESUMO

Class III peroxidases (PODs) are plant-specific enzymes that play significant roles in plant physiological processes and stress responses. However, a comprehensive analysis of the POD gene family in tobacco has not yet been conducted. In this study, 210 non-redundant POD gene members (NtPODs) were identified in tobacco (Nicotiana tabacum) and distributed unevenly throughout 24 tobacco chromosomes. Phylogenetic analysis clustered these genes into six subgroups (I-VI). Gene structure and motif analyses showed the structural and functional diversity among the subgroups. Segmental duplication and purifying selection were the main factors affecting NtPOD gene evolution. Our analyses also suggested that NtPODs might be regulated by miRNAs and cis-acting regulatory elements of transcription factors that are involved in various biological processes. In addition, the expression patterns in different tissues and under various stress treatments were investigated. The results showed that the majority of NtPODs had tissue-specific expression patterns and may be involved in many biotic and abiotic responses. qRT-PCR analyses of different tissues and stress treatments were performed to verify transcriptome patterns. Expression of a green fluorescent protein-NtPOD fusion confirmed the plasma membrane localization of NtPOD121 and NtPOD4. Furthermore, 3D structures provided evidences of membrane-bound peroxidase. These findings provide useful information to better understand the evolution of the NtPOD gene family and lay the foundation for further studies on POD gene function in tobacco.

17.
Comput Struct Biotechnol J ; 20: 1841-1859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35521543

RESUMO

Upland cotton is an important allotetraploid crop that provides both natural fiber for the textile industry and edible vegetable oil for the food or feed industry. To better understand the genetic mechanism that regulates the biosynthesis of storage oil in cottonseed, we identified the genes harbored in the major quantitative trait loci/nucleotides (QTLs/QTNs) of kernel oil content (KOC) in cottonseed via both multiple linkage analyses and genome-wide association studies (GWAS). In 'CCRI70' RILs, six stable QTLs were simultaneously identified by linkage analysis of CHIP and SLAF-seq strategies. In '0-153' RILs, eight stable QTLs were detected by consensus linkage analysis integrating multiple strategies. In the natural panel, thirteen and eight loci were associated across multiple environments with two algorithms of GWAS. Within the confidence interval of a major common QTL on chromosome 3, six genes were identified as participating in the interaction network highly correlated with cottonseed KOC. Further observations of gene differential expression showed that four of the genes, LtnD, PGK, LPLAT1, and PAH2, formed hub genes and two of them, FER and RAV1, formed the key genes in the interaction network. Sequence variations in the coding regions of LtnD, FER, PGK, LPLAT1, and PAH2 genes may support their regulatory effects on oil accumulation in mature cottonseed. Taken together, clustering of the hub genes in the lipid biosynthesis interaction network provides new insights to understanding the mechanism of fatty acid biosynthesis and TAG assembly and to further genetic improvement projects for the KOC in cottonseeds.

18.
Front Genet ; 13: 855574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450216

RESUMO

Cotton (Gossypium spp.) is an important natural fiber plant. Lint percentage (LP) is one of the most important determinants of cotton yield and is a typical quantitative trait with high variation and heritability. Many cotton LP genetic linkages and association maps have been reported. This work summarizes the inheritance, quantitative trait loci (QTLs), and candidate genes of LP to facilitate LP genetic study and molecular breeding. More than 1439 QTLs controlling LP have been reported. Excluding replicate QTLs, 417 unique QTLs have been identified on 26 chromosomes, including 243 QTLs identified at LOD >3. More than 60 are stable, major effective QTLs that can be used in marker-assisted selection (MAS). More than 90 candidate genes for LP have been reported. These genes encode MYB, HOX, NET, and other proteins, and most are preferentially expressed during fiber initiation and elongation. A putative molecular regulatory model of LP was constructed and provides the foundation for the genetic study and molecular breeding of LP.

19.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216157

RESUMO

Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein-protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Variação Genética , Gossypium/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo
20.
J Agric Food Chem ; 70(8): 2529-2544, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35170322

RESUMO

Cotton is the fifth-largest oil crop in the world. A high kernel oil content (KOC) and high stability are important cottonseed attributes for food security. In this study, the phenotype of KOC and the genotype-by-environment interaction factors were collectively dissected using 250 recombinant inbred lines, their parental cultivars sGK156 and 901-001, and CCRI70 across multi-environments. ANOVA and correlation analysis showed that both genotype and environment contributed significantly to KOC accumulation. Analyses of additive main effect multiplicative interaction and genotype-by-environment interaction biplot models presented the effects of genotype, environment, and genotype by environment on KOC performance and the stability of the experimental materials. Interaction network analysis revealed that meteorological and geographical factors explained 38% of the total KOC variance, with average daily rainfall contributing the largest positive impact and cumulative rainfall having the largest negative impact on KOC accumulation. This study provides insight into KOC accumulation and could direct selection strategies for improved KOC and field management of cottonseed in the future.


Assuntos
Óleo de Sementes de Algodão , Gossypium , Genótipo , Gossypium/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA