Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Circulation ; 148(7): 589-606, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37203562

RESUMO

BACKGROUND: Aortic dissection (AD) is a fatal cardiovascular disorder without effective medications due to unclear pathogenic mechanisms. Bestrophin3 (Best3), the predominant isoform of bestrophin family in vessels, has emerged as critical for vascular pathological processes. However, the contribution of Best3 to vascular diseases remains elusive. METHODS: Smooth muscle cell-specific and endothelial cell-specific Best3 knockout mice (Best3SMKO and Best3ECKO, respectively) were engineered to investigate the role of Best3 in vascular pathophysiology. Functional studies, single-cell RNA sequencing, proteomics analysis, and coimmunoprecipitation coupled with mass spectrometry were performed to evaluate the function of Best3 in vessels. RESULTS: Best3 expression in aortas of human AD samples and mouse AD models was decreased. Best3SMKO but not Best3ECKO mice spontaneously developed AD with age, and the incidence reached 48% at 72 weeks of age. Reanalysis of single-cell transcriptome data revealed that reduction of fibromyocytes, a fibroblast-like smooth muscle cell cluster, was a typical feature of human ascending AD and aneurysm. Consistently, Best3 deficiency in smooth muscle cells decreased the number of fibromyocytes. Mechanistically, Best3 interacted with both MEKK2 and MEKK3, and this interaction inhibited phosphorylation of MEKK2 at serine153 and MEKK3 at serine61. Best3 deficiency induced phosphorylation-dependent inhibition of ubiquitination and protein turnover of MEKK2/3, thereby activating the downstream mitogen-activated protein kinase signaling cascade. Furthermore, restoration of Best3 or inhibition of MEKK2/3 prevented AD progression in angiotensin II-infused Best3SMKO and ApoE-/- mice. CONCLUSIONS: These findings unveil a critical role of Best3 in regulating smooth muscle cell phenotypic switch and aortic structural integrity through controlling MEKK2/3 degradation. Best3-MEKK2/3 signaling represents a novel therapeutic target for AD.


Assuntos
Dissecção Aórtica , Músculo Liso Vascular , Animais , Humanos , Camundongos , Dissecção Aórtica/genética , Sistema de Sinalização das MAP Quinases , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação
2.
Front Pharmacol ; 13: 1040999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457708

RESUMO

Obesity-induced metabolic syndrome is a rapidly growing conundrum, reaching epidemic proportions globally. Chronic inflammation in obese adipose tissue plays a key role in metabolic syndrome with a series of local and systemic effects such as inflammatory cell infiltration and inflammatory cytokine secretion. Adipose tissue macrophages (ATM), as one of the main regulators in this process, are particularly crucial for pharmacological studies on obesity-related metabolic syndrome. Ponatinib, a multi-targeted tyrosine kinase inhibitor originally used to treat leukemia, has recently been found to improve dyslipidemia and atherosclerosis, suggesting that it may have profound effect on metabolic syndrome, although the mechanisms underlying have not yet been revealed. Here we discovered that ponatinib significantly improved insulin sensitivity in leptin deficient obese mice. In addition to that, ponatinib treatment remarkably ameliorated high fat diet-induced hyperlipidemia and inhibited ectopic lipid deposition in the liver. Interestingly, although ponatinib did not reduce but increase the weight of white adipose tissue (WAT), it remarkably suppressed the inflammatory response in WAT and preserved its function. Mechanistically, we showed that ponatinib had no direct effect on hepatocyte or adipocyte but attenuated free fatty acid (FFA) induced macrophage transformation from pro-inflammatory to anti-inflammatory phenotype. Moreover, adipocytes co-cultured with FFA-treated macrophages exhibited insulin resistance, while pre-treat these macrophages with ponatinib can ameliorate this process. These results suggested that the beneficial effects of ponatinib on metabolic disorders are achieved by inhibiting the inflammatory phenotypic transformation of ATMs, thereby maintaining the physiological function of adipose tissue under excessive obesity. The data here not only revealed the novel therapeutic function of ponatinib, but also provided a theoretical basis for the application of multi-target tyrosine kinase inhibitors in metabolic diseases.

3.
FASEB J ; 36(11): e22603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259445

RESUMO

Renal fibrosis underlies all forms of end-stage kidney disease. Endophilin A2 (EndoA2) plays a role in nephrotic syndrome; however, its effect on renal fibrosis remains unknown. Here, we demonstrate that EndoA2 protects against kidney interstitial fibrosis via the transforming growth factor-ß (TGF-ß)/Smad signaling pathway. Mouse kidneys with fibrosis or kidney biopsy specimens from patients with fibrotic nephropathy had lower levels of EndoA2 protein expression than that in kidneys without fibrosis. In vivo overexpression of EndoA2 with the endophilin A2 transgene (EndoA2Tg ) notably prevented renal fibrosis, decreased the protein expression of profibrotic molecules, suppressed tubular injury, and reduced apoptotic tubular cells in the obstructed kidney cortex of mice with unilateral ureteral obstruction (UUO). In vivo and in vitro overexpression of EndoA2 markedly inhibited UUO- or TGF-ß1-induced phosphorylation of Smad2/3 and tubular epithelial cells dedifferentiation. Furthermore, EndoA2 was co-immunoprecipitated with the type II TGF-ß receptor (TßRII), thus inhibiting the binding of the type I TGF-ß receptor (TßRI) to TßRII. These findings indicate that EndoA2 mitigates renal fibrosis, at least partially, via modulating the TGF-ß/Smad signaling. Targeting EndoA2 may be a new potential therapeutic strategy for treatment of renal fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Camundongos , Fibrose , Rim/metabolismo , Nefropatias/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/metabolismo
4.
Eur Heart J ; 42(47): 4847-4861, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34570211

RESUMO

AIMS: Our previous study demonstrated that Ca2+ influx through the Orai1 store-operated Ca2+ channel in macrophages contributes to foam cell formation and atherosclerosis via the calcineurin-ASK1 pathway, not the classical calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Moreover, up-regulation of NFATc3 in macrophages inhibits foam cell formation, suggesting that macrophage NFATc3 is a negative regulator of atherogenesis. Hence, this study investigated the precise role of macrophage NFATc3 in atherogenesis. METHODS AND RESULTS: Macrophage-specific NFATc3 knockout mice were generated to determine the effect of NFATc3 on atherosclerosis in a mouse model of adeno-associated virus-mutant PCSK9-induced atherosclerosis. NFATc3 expression was decreased in macrophages within human and mouse atherosclerotic lesions. Moreover, NFATc3 levels in peripheral blood mononuclear cells from atherosclerotic patients were negatively associated with plaque instability. Furthermore, macrophage-specific ablation of NFATc3 in mice led to the atherosclerotic plaque formation, whereas macrophage-specific NFATc3 transgenic mice exhibited the opposite phenotype. NFATc3 deficiency in macrophages promoted foam cell formation by potentiating SR-A- and CD36-meditated lipid uptake. NFATc3 directly targeted and transcriptionally up-regulated miR-204 levels. Mature miR-204-5p suppressed SR-A expression via canonical regulation. Unexpectedly, miR-204-3p localized in the nucleus and inhibited CD36 transcription. Restoration of miR-204 abolished the proatherogenic phenotype observed in the macrophage-specific NFATc3 knockout mice, and blockade of miR-204 function reversed the beneficial effects of NFATc3 in macrophages. CONCLUSION: Macrophage NFATc3 up-regulates miR-204 to reduce SR-A and CD36 levels, thereby preventing foam cell formation and atherosclerosis, indicating that the NFATc3/miR-204 axis may be a potential therapeutic target against atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Células Espumosas , Humanos , Leucócitos Mononucleares , Camundongos , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Pró-Proteína Convertase 9
5.
J Fluoresc ; 31(3): 755-761, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33646474

RESUMO

SO2 and its derivatives are widely present in the environment and living organisms, endangering the environment and human health. Therefore, it is of great significance for the effective detection of sulfur dioxide (SO2) and its hydrated derivatives (HSO3- /SO32-). In this study, based on the mechanism of intramolecular charge transfer (ICT), a water-soluble colorimetric fluorescent probe (E)-2-(4-acetamidostyryl)-3-(5-carboxypentyl)-1, 1-dimethyl-1H-benzo[e]indol-3-ium (ABI) for the detection of SO2 derivatives was successfully synthesized from p-acetaminobenzaldehyde by connecting the benzo[e]indoles cationic fluorophore containing highly activated methyl via C = C double bond, and the ABI structure was characterized by HRMS and 1H NMR, 13 C NMR. Studies have shown that the ABI probe has some advantages such as good selectivity for SO2 derivatives, high sensitivity (detection limit LOD = 14.9 nM), and fast reaction rate. After adding HSO3-, the color of the probe solution changed from light yellow to colorless within 10 s, which provides a simple way to identify bisulfite with the naked eye. Studies on the effect of pH on the fluorescence performance of ABI showed that fluorescence performance of ABI was stable in the range of pH (7.0-10.26). Therefore, ABI is expected to become an effective tool for detecting SO2 derivatives in cells and organisms in the future.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Limite de Detecção , Dióxido de Enxofre/análise , Água/química , Técnicas de Química Sintética , Dióxido de Enxofre/química
6.
Inorg Chem ; 60(5): 3393-3400, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595301

RESUMO

A novel covalent organic framework material COF-DM, which contains chelating coordination environments, was synthesized at the gram level under mild conditions. In addition, its Cu(II)-loaded complex of Cu(II)@COF-DM was prepared by impregnating COF-DM in an acetonitrile solution of CuCl2 via a solid-state coordination approach. The obtained Cu(II)-loaded Cu(II)@COF-DM can be used as a highly active heterogeneous catalyst to catalyze the alkyne-dihalomethane-amine coupling reactions.

7.
Acta Pharmacol Sin ; 42(4): 560-572, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32694758

RESUMO

Chloride (Cl-) homeostasis is of great significance in cardiovascular system. Serum Cl- level is inversely associated with the mortality of patients with heart failure. Considering the importance of angiogenesis in the progress of heart failure, this study aims to investigate whether and how reduced intracellular Cl- concentration ([Cl-]i) affects angiogenesis. Human umbilical endothelial cells (HUVECs) were treated with normal Cl- medium or low Cl- medium. We showed that reduction of [Cl-]i (from 33.2 to 16.18 mM) inhibited HUVEC proliferation, migration, cytoskeleton reorganization, tube formation, and subsequently suppressed angiogenesis under basal condition, and VEGF stimulation or hypoxia treatment. Moreover, VEGF-induced NADPH-mediated reactive oxygen species (ROS) generation and VEGFR2 axis activation were markedly attenuated in low Cl- medium. We revealed that lowering [Cl-]i inhibited the expression of the membrane-bound catalytic subunits of NADPH, i.e., p22phox and Nox2, and blunted the translocation of cytosolic regulatory subunits p47phox and p67phox, thereby restricting NADPH oxidase complex formation and activation. Furthermore, reduced [Cl-]i enhanced ROS-associated protein tyrosine phosphatase 1B (PTP1B) activity and increased the interaction of VEGFR2 and PTP1B. Pharmacological inhibition of PTP1B reversed the effect of lowering [Cl-]i on VEGFR2 phosphorylation and angiogenesis. In mouse hind limb ischemia model, blockade of Cl- efflux using Cl- channel inhibitors DIDS or DCPIB (10 mg/kg, i.m., every other day for 2 weeks) significantly enhanced blood flow recovery and new capillaries formation. In conclusion, decrease of [Cl-]i suppresses angiogenesis via inhibiting oxidase stress-mediated VEGFR2 signaling activation by preventing NADPH oxidase complex formation and promoting VEGFR2/PTP1B association, suggesting that modulation of [Cl-]i may be a novel therapeutic avenue for the treatment of angiogenic dysfunction-associated diseases.


Assuntos
Cloretos/metabolismo , Neovascularização Fisiológica/fisiologia , Estresse Oxidativo/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Citoesqueleto de Actina/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , NADPH Oxidases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
J Am Chem Soc ; 142(40): 16915-16920, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32941016

RESUMO

Direct synthesis, postsynthetic modification, and chiral induction have been recognized as three powerful methods to synthesize chiral covalent organic frameworks (CCOFs). However, catalytic asymmetric methodology, as the most important and effective synthetic approach to access chiral organics, has not been enabled for CCOFs synthesis thus far. Herein we report, for the first time, the construction of CCOFs from prochiral monomers via catalytic asymmetric polymerization. The obtained propargylamine-linked CCOFs can be the highly reusable chiral catalysts to promote asymmetric Michael addition reactions. The concept of catalytic asymmetric polymerization might open a new route for constructing the CCOFs that are not possible with the existing CCOF synthetic methods.

9.
Adv Sci (Weinh) ; 7(10): 1903657, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440483

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.

10.
Theranostics ; 10(9): 3980-3993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226533

RESUMO

Rationale: Transmembrane member 16A (TMEM16A) is a component of calcium-activated chloride channels that regulate vascular smooth muscle cell (SMC) proliferation and remodeling. Autophagy, a highly conserved cellular catabolic process in eukaryotes, exerts important physiological functions in vascular SMCs. In the current study, we investigated the relationship between TMEM16A and autophagy during vascular remodeling. Methods: We generated a transgenic mouse that overexpresses TMEM16A specifically in vascular SMCs to verify the role of TMEM16A in vascular remodeling. Techniques employed included immunofluorescence, electron microscopy, co-immunoprecipitation, and Western blotting. Results: Autophagy was activated in aortas from angiotensin II (AngII)-induced hypertensive mice with decreased TMEM16A expression. The numbers of light chain 3B (LC3B)-positive puncta in aortas correlated with the medial cross-sectional aorta areas and TMEM16A expression during hypertension. SMC-specific TMEM16A overexpression markedly inhibited AngII-induced autophagy in mouse aortas. Moreover, in mouse aortic SMCs (MASMCs), AngII-induced autophagosome formation and autophagic flux were blocked by TMEM16A upregulation and were promoted by TMEM16A knockdown. The effect of TMEM16A on autophagy was independent of the mTOR pathway, but was associated with reduced kinase activity of the vacuolar protein sorting 34 (VPS34) enzyme. Overexpression of VPS34 attenuated the effect of TMEM16A overexpression on MASMC proliferation, while the effect of TMEM16A downregulation was abrogated by a VPS34 inhibitor. Further, co-immunoprecipitation assays revealed that TMEM16A interacts with p62. TMEM16A overexpression inhibited AngII-induced p62-Bcl-2 binding and enhanced Bcl-2-Beclin-1 interactions, leading to suppression of Beclin-1/VPS34 complex formation. However, TMEM16A downregulation showed the opposite effects. Conclusion: TMEM16A regulates the four-way interaction between p62, Bcl-2, Beclin-1, and VPS34, and coordinately prevents vascular autophagy and remodeling.


Assuntos
Anoctamina-1/fisiologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Animais , Autofagia , Células Cultivadas , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição TFIIH/metabolismo
11.
Anal Sci ; 36(3): 329-333, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31631103

RESUMO

The content of sulfur dioxide derivatives in cells is closely related to life and health. Therefore, it is essential to detect the content of sulfur dioxide derivatives in cells under physiological conditions to ensure life and health. In this paper, a novel sulfur dioxide derivative fluorescent water-soluble probe ((E)-1,1,3-trimethyl-2-(2-(naphthalen-1-yl)vinyl)-1H-3λ4-benzo[e]indole, TNB) was synthesized by using naphthalene formaldehyde (1) and 1,1,2,3-tetramethyl-1H-3λ4-benzo[e]indole (2) as raw materials. Based on the intramolecular charge transfer (ICT) mechanism of the naphthalene ring to benzoindole, TNB exhibits very weak fluorescence emission in PBS buffer (pH 7.4). The olefin unit of TNB can be combined with HSO3-/SO32- with high selectivity to make the π-π conjugate interrupt. ICT is blocked, TNB produces a strong fluorescence emission, and the color visible to the naked eye changes from yellow to colorless. The effect of TNB on HSO3-/SO32- can be completed in 40 s, the fluorescence intensity is increased by 91 times, and the detection limit is as low as 0.089 µM. It is expected to be able to rapidly detect low levels of sulfur dioxide derivatives in cells, which has important application prospects in maintaining life and health.


Assuntos
Dióxido de Enxofre/análise , Poluentes Químicos da Água/análise , Fluorescência , Corantes Fluorescentes/química , Limite de Detecção
12.
Cell Death Dis ; 10(5): 365, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064980

RESUMO

MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE-/- mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE-/- mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.


Assuntos
Aterosclerose/patologia , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antagomirs/metabolismo , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Dieta Hiperlipídica , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/sangue , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
13.
Cell Death Dis ; 9(6): 610, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795190

RESUMO

The development of nephrotoxicity largely limits the clinical use of chemotherapy. MiRNAs are able to target various genes and involved in the regulation of diverse cellular processes, including cell apoptosis and death. Our study showed that miR-181a expression was significantly increased after 5-fluorouracil (5-FU) treatment in renal mesangial cells and kidney tissue, which was associated with decreased baculoviral inhibition of apoptosis protein repeat-containing 6 (BIRC6) expression and increased apoptotic rate. Enforced miR-181a expression enhanced 5-FU-induced p53-dependent mitochondrial apoptosis, including declined Bcl-2/Bax ratio, loss of mitochondrial membrane potential, cytochrome c release, and caspase-9 and caspase-3 activation. However, inhibition of miR-181a was associated with reduced p53-mediated mitochondrial apoptosis induced by 5-FU. Moreover, miR-181a increased BIRC6 downstream gene p53 protein expression and transcriptional activity by reducing ubiquitin-mediated protein degradation. We found that miR-181a directly targeted 3'-UTR of BIRC6 mRNA and negatively regulated BIRC6 expression. In vivo study, knockdown of miR-181a with adeno-associated virus harboring miR-181a-tough decoy attenuated 5-FU-induced renal cell apoptosis, inflammation and kidney injury. In conclusion, these results demonstrate that miR-181a increases p53 protein expression and transcriptional activity by targeting BIRC6 and promotes 5-FU-induced apoptosis in mesangial cells. Inhibition of miR-181a ameliorates 5-FU-induced nephrotoxicity, suggesting that miR-181a may be a novel therapeutic target for nephrotoxicity treatment during chemotherapy.


Assuntos
Apoptose , Fluoruracila/efeitos adversos , Nefropatias/genética , Nefropatias/patologia , Rim/patologia , Células Mesangiais/patologia , MicroRNAs/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Células HCT116 , Humanos , Inflamação/patologia , Proteínas Inibidoras de Apoptose/metabolismo , Células Mesangiais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
14.
Biochem Biophys Res Commun ; 495(2): 1864-1870, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29225169

RESUMO

Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.


Assuntos
Aortite/imunologia , Calcineurina/imunologia , Cálcio/imunologia , Moléculas de Adesão Celular/imunologia , Endotélio Vascular/imunologia , Fatores de Transcrição NFATC/imunologia , Proteína ORAI1/imunologia , Animais , Aortite/patologia , Células Cultivadas , Regulação para Baixo/imunologia , Humanos , Mediadores da Inflamação/imunologia , Redes e Vias Metabólicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL
15.
J Cell Mol Med ; 21(5): 904-915, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27878958

RESUMO

Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Fluoruracila/farmacologia , Neoplasias Hepáticas/metabolismo , Proteína ORAI1/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
16.
J Am Soc Nephrol ; 27(10): 3063-3078, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26940090

RESUMO

Evidence supports an important role of Ca2+ release-activated Ca2+ channel protein 1 (Orai1)-mediated Ca2+ entry in the development of renal fibrosis, a common pathologic feature of CKDs that lead to ESRD, but the molecular mechanisms remain unclear. We determined the role of Orai1 calcium channel in renal fibrosis induced by high-fat diet and by unilateral ureteral obstruction. Mouse kidneys with fibrosis had higher levels of Orai1 protein expression than did kidneys without fibrosis. In vivo knockdown of Orai1 with adenovirus harboring Orai1-short hairpin RNA or inhibition of Orai1 with SKF96365 dramatically prevented renal fibrosis and significantly decreased protein expression of fibronectin, α­smooth muscle actin, and TGF­ß1 in the kidney cortex of ApoE-/- mice on a high-fat diet and in the obstructed kidneys of mice with unilateral ureteral obstruction. Compared with kidney biopsy specimens of patients with glomerular minimal change disease, those of patients with fibrotic nephropathy had higher expression levels of Orai1. In cultured human proximal tubule epithelial cells (HK2), knockdown of Orai1 Ca2+ channel with adenovirus-Orai1-short hairpin RNA markedly inhibited TGF-ß1-induced intracellular Ca2+ influx and phosphorylation of smad2/3. Knockdown or blockade of the Orai1 Ca2+ channel in HK2 cells also prevented epithelial-to-mesenchymal transition induced by TGF­ß1. In conclusion, blockade of the Orai1 Ca2+ channel prevented progression of renal fibrosis in mice, likely by suppressing smad2/3 phosphorylation and TGF-ß1-induced epithelial-to-mesenchymal transition. These results render the Orai1 Ca2+ channel a potential therapeutic target against renal fibrosis.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Cálcio/metabolismo , Imidazóis/farmacologia , Rim/patologia , Proteína ORAI1/antagonistas & inibidores , Animais , Células Cultivadas , Fibrose/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Circ J ; 80(4): 1024-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26911455

RESUMO

BACKGROUND: Previous work has demonstrated that the volume-regulated chloride channel is activated during foam cell formation, and inhibition of chloride movement prevents intracellular lipid accumulation. However, the mechanism explaining how chloride movement promotes foam cell formation is not clear. METHODS AND RESULTS: Foam cell formation was determined by Oil Red O staining. Western blotting and co-immunoprecipitation were used to examine protein expression and protein-protein interaction. [Cl(-)]iwas measured using 6-methoxy-N-ethylquinolinium iodide dye. The results showed that [Cl(-)]iwas decreased in monocytes/macrophages from patients with hypercholesterolemia and from apoE(-/-)mice fed with a high-fat diet. Lowering [Cl(-)]iupregulated scavenger receptor A (SR-A) expression, increased the binding and uptake of oxLDL, enhanced pro-inflammatory cytokine production and subsequently accelerated foam cell formation in macrophages from humans and mice. In addition, low Cl(-)solution stimulated the activation of JNK and p38 mitogen-activated protein kinases. Inhibition of JNK and p38 blocked Cl(-)reduced medium-induced SR-A expression and lipid accumulation. In contrast, reduction of [Cl(-)]ipromoted the interaction of SR-A with caveolin-1, thus facilitating caveolin-1-dependent SR-A endocytosis. Moreover, disruption of caveolae attenuated SR-A internalization, JNK and p38 activation, and ultimately prevented SR-A expression and foam cell formation stimulated by low Cl(-)medium. CONCLUSIONS: This data provide strong evidence that reduction of [Cl(-)]iis a critical contributor to intracellular lipid accumulation, suggesting that modulation of [Cl(-)]iis a novel avenue to prevent foam cell formation and atherosclerosis.


Assuntos
Cloretos/metabolismo , Células Espumosas/metabolismo , Hipercolesterolemia/metabolismo , Animais , Apolipoproteínas E/deficiência , Caveolina 1/genética , Caveolina 1/metabolismo , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células Espumosas/patologia , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 36(4): 618-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26916730

RESUMO

OBJECTIVE: To determine the role of orai1 store-operated Ca(2+) entry in foam cell formation and atherogenesis. APPROACH AND RESULTS: Acute administration of oxidized low-density lipoprotein (oxLDL) activates an orai1-dependent Ca(2+) entry in macrophages. Chelation of intracellular Ca(2+), inhibition of orai1 store-operated Ca(2+) entry, or knockdown of orai1 dramatically inhibited oxLDL-induced upregulation of scavenger receptor A, uptake of modified LDL, and foam cell formation. Orai1-dependent Ca(2+) entry induces scavenger receptor A expression and foam cell formation through activation of calcineurin but not calmodulin kinase II. Activation of nuclear factor of activated T cells is not involved in calcineurin signaling to foam cell formation. However, oxLDL dephosohorylates and activates apoptosis signal-regulating kinase 1 in macrophages. Orai1 knockdown prevents oxLDL-induced apoptosis signal-regulating kinase 1 activation. Knockdown of apoptosis signal-regulating kinase 1, or inhibition of its downstream effectors, JNK and p38 mitogen-activated protein kinase, reduces scavenger receptor A expression and foam cell formation. Notably, orai1 expression is increased in atherosclerotic plaques of apolipoprotein E(-/-) mice fed with high-cholesterol diet. Knockdown of orai1 with adenovirus harboring orai1 siRNA or inhibition of orai1 Ca(2+) entry with SKF96365 for 4 weeks dramatically inhibits atherosclerotic plaque development in high-cholesterol diet feeding apolipoprotein E(-/-) mice. In addition, inhibition of orai1 Ca(2+) entry prevents macrophage apoptosis in atherosclerotic plaque. Moreover, the expression of inflammatory genes in atherosclerotic lesions and the infiltration of myeloid cells into the aortic sinus plaques are decreased after blocking orai1 signaling. CONCLUSIONS: Orai1-dependent Ca(2+) entry promotes atherogenesis possibly by promoting foam cell formation and vascular inflammation, rendering orai1 Ca(2+) channel a potential therapeutic target against atherosclerosis.


Assuntos
Anticolesterolemiantes/farmacologia , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Calcineurina/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipoproteínas LDL/farmacologia , MAP Quinase Quinase Quinase 5/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos Knockout , Proteína ORAI1 , Placa Aterosclerótica , Interferência de RNA , Receptores Depuradores Classe A/metabolismo , Fatores de Tempo , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Curr Microbiol ; 54(1): 5-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17160363

RESUMO

The low efficiency of the oral infectivity of recombinant polyhedrin-negative baculovirus is a major bottleneck in the application of the baculovirus expression system in the silkworm (Bombyx mori L). In this study, the effects of a fluorescent whitening agent on improving the oral infection for the recombinant Bombyx mori nuclear polyhedrosis virus in silkworm larva and their possible mechanism were investigated. The results showed that the peroral infection can be remarkably enhanced by adding VBL into the larval artificial diet. The maximum infection rate reached as high as 90% with the concentration of VBL (1%), which was then considered as optimal. The total protease activity and pH value of the larval intestinal juice were found to be lower when compared to the control, indicating an abnormal physiological change of the larval digestive system by VBL, which, in turn, resulted in improved peroral infection of recombinant virus.


Assuntos
Derivados de Benzeno/farmacologia , Bombyx/virologia , Corantes Fluorescentes/farmacologia , Nucleopoliedrovírus/crescimento & desenvolvimento , 6-Fitase/metabolismo , Administração Oral , Animais , Bombyx/imunologia , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Intestinos/imunologia , Larva/imunologia , Larva/virologia , Boca/virologia , Proteínas Recombinantes/biossíntese
20.
Virology ; 360(1): 235-46, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17097707

RESUMO

The complete nucleotide sequence of Ectropis obliqua nucleopolyhedrovirus (EcobNPV), which infects the tea looper caterpillar, was determined and analyzed. The double stranded circular genome is composed of 131,204 bp and is 37.6% G+C rich. The analysis predicted 126 putative, minimally overlapping open reading frames (ORFs) with 150 or more nucleotides that together compose 89.8% of the genome. The remaining 10.2% constitute non-coding and three homologous regions. Comparison with previously sequenced baculoviruses indicated that three ORFs were unique to EcobNPV, while the remaining 123 ORFs shared identity with other baculovirus genes. In addition to two bro homologues, three other repeat ORFs, including dbp, p26, and odv-e66, were identified. Phylogenetic analysis indicated that each member of the paired ORFs was acquired independently. Gene parity plot analysis and percent identity of gene homologues suggested that EcobNPV is a Group II NPV, although its genomic organization was highly distinct.


Assuntos
Genoma Viral/genética , Lepidópteros/virologia , Nucleopoliedrovírus/genética , Animais , Composição de Bases , Lepidópteros/fisiologia , Nucleopoliedrovírus/classificação , Fases de Leitura Aberta/genética , Filogenia , Especificidade da Espécie , Chá/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA