Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2320277121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507450

RESUMO

Proper expression of odor receptor genes is critical for the function of olfactory systems. In this study, we identified exitrons (exonic introns) in four of the 39 Odorant receptor (Or) genes expressed in the Drosophila antenna. Exitrons are sequences that can be spliced out from within a protein-coding exon, thereby altering the encoded protein. We focused on Or88a, which encodes a pheromone receptor, and found that exitron splicing of Or88a is conserved across five Drosophila species over 20 My of evolution. The exitron was spliced out in 15% of Or88a transcripts. Removal of this exitron creates a non-coding RNA rather than an RNA that encodes a stable protein. Our results suggest the hypothesis that in the case of Or88a, exitron splicing could act in neuronal modulation by decreasing the level of functional Or transcripts. Activation of Or88a-expressing olfactory receptor neurons via either optogenetics or pheromone stimulation increased the level of exitron-spliced transcripts, with optogenetic activation leading to a 14-fold increase. A fifth Or can also undergo an alternative splicing event that eliminates most of the canonical open reading frame. Besides these cases of alternative splicing, we found alternative polyadenylation of four Ors, and exposure of Or67c to its ligand ethyl lactate in the antenna downregulated all of its 3' isoforms. Our study reveals mechanisms by which neuronal activity could be modulated via regulation of the levels of Or isoforms.


Assuntos
Drosophila , Receptores Odorantes , Animais , Drosophila/genética , Odorantes , Splicing de RNA/genética , Processamento Alternativo/genética , Isoformas de Proteínas/genética , Receptores Odorantes/genética
3.
Exploration (Beijing) ; 3(4): 20220136, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933235

RESUMO

Oxaliplatin is a first-line chemotherapy drug widely adopted in colorectal cancer (CRC) treatment. However, a large proportion of patients tend to become resistant to oxaliplatin, causing chemotherapy to fail. At present, researches on oxaliplatin resistance mainly focus on the genetic and epigenetic alterations during cancer evolution, while the characteristics of high-order three-dimensional (3D) conformation of genome are yet to be explored. In order to investigate the chromatin conformation alteration during oxaliplatin resistance, we performed multi-omics study by combining DLO Hi-C, ChIP-seq as well as RNA-seq technologies on the established oxaliplatin-resistant cell line HCT116-OxR, as well as the control cell line HCT116. The results indicate that 19.33% of the genome regions have A/B compartments transformation after drug resistance, further analysis of the genes converted by A/B compartments reveals that the acquisition of oxaliplatin resistance in tumor cells is related to the reduction of reactive oxygen species and enhanced metastatic capacity. Our research reveals the spatial chromatin structural difference between CRC cells and oxaliplatin resistant cells based on the DLO Hi-C and other epigenetic omics experiments. More importantly, we provide potential targets for oxaliplatin-resistant cancer treatment and a new way to investigate drug resistance behavior under the perspective of 3D genome alteration.

4.
Cancer Lett ; 575: 216404, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37739210

RESUMO

Elevated expression and genetic aberration of IRTKS, also named as BAIAP2L1, have been observed in many tumors, especially in tumor progression. however, the molecular and cellular mechanisms involved in the IRTKS-enhanced tumor progression are obscure. Here we show that higher IRTKS level specifically increases histone H3 lysine 9 trimethylation (H3K9me3) by promoting accumulation of the histone methyltransferase SETDB1. Furthermore, we reveal that IRTKS recruits the deubiquitinase OTUD4 to remove Lys48-linked polyubiquitination at K182/K1050 sites of SETDB1, thus blocking SETDB1 degradation via the ubiquitin-proteasome pathway. Interestingly, the enhanced IRTKS-OTUD4-SETDB1-H3K9me3 axis leads to a general decrease in chromatin accessibility, which inhibits transcription of CDH1 encoding E-cadherin, a key molecule essential for maintaining epithelial cell phenotype, and therefore results in epithelial-mesenchymal transition (EMT) and malignant cell metastasis. Clinically, the elevated IRTKS levels in tumor specimens correlate with SETDB1 levels, but negatively associate with survival time. Our data reveal a novel mechanism for the IRTKS-enhanced tumor progression, where IRTKS cooperates with OTUD4 to enhance SETDB1-mediated H3K9 trimethylation that promotes tumor metastasis via suppressing E-cadherin expression. This study also provides a potential approach to reduce the activity and stability of the known therapeutic target SETDB1 possibly through regulating IRTKS or deubiquitinase OTUD4.

5.
Front Microbiol ; 13: 1034839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439854

RESUMO

Background: Obesity has become a global health and socioeconomic problem because of an inadequate balance between energy intake and energy expenditure. Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are the two most commonly used strategies for weight loss, which have been proven to benefit from gut microbiota restoration. Methods: Rats received SG, RYGB, and sham operations for 10 weeks. At the end of the experiment, the fecal microbiota was analyzed using 16s rRNA gene sequencing. In addition, the shift in the plasma metabolism of rats that underwent RYGB surgery was analyzed using untargeted metabolomics. The crosstalk between microbiome and metabolites was revealed using metabolic pathway enrichment and integrated analysis. Result: The SG surgery induced a modest shift in the gut microbiota relative to the RYGB. RYGB significantly decreased the alpha diversity and Firmicutes/Bacteroides (F/B) ratio and increased the proportion of Escherichia, Bacteroides, and Akkermansia genera compared to sham and SG operations. The predicted function of gut microbiota revealed that the RYGB surgery uniquely enhanced the capability of linoleic acid and sphingolipid metabolism. Furthermore, the circulating serine, phosphatidylcholine (PC) 20:5/22:5, riboflavin, L-carnitine, and linoleic acid were evaluated after RYGB surgery. In addition, the metabolic pathway enrichment and integrated analysis suggest that the RYGB induced Escherichia, Bacteroides, and Akkermansia might inhibit the sphingonine and phytosphingosine metabolisms from serine and promote the PC (20:5/22:5) metabolism to produce linoleic acid. Conclusion: This comprehensive analysis not only revealed the difference in the gut microbiota shifts after SG and RYGB but also discovered the perturbative changes in microbial communities and metabolic pathways after RYGB surgery, which provided clues for improving the beneficial effect of RYGB in metabolic disease intervention via regulating bacterial-metabolite crosstalk.

6.
J Pharm Pharmacol ; 74(12): 1749-1757, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36206186

RESUMO

OBJECTIVES: Triterpenoid saponins of Ilex pubescens (IPTS), the main active components of Ilex pubescens, has a therapeutic effect on atherosclerosis (AS). The ingredients in IPTS that could be intracellularly transported by human umbilical vein endothelial cells (HUVECs) may play an essential role in AS. This study attempted to explore its mechanism from the perspectives of HUVECs' inflammation, apoptosis, and autophagy. METHODS: By using a tumour necrosis factor-α (TNF-α)-induced HUVECs injury model, cell viability and the expression of intercellular adhesion molecule 1 (ICAM1), matrix metalloproteinase 9 (MMP9), cleave-caspase-3 and cleave-caspase-9, in combination with the results of flow cytometry, JC-1 and Hoechst 33258 staining were investigated to evaluate the anti-inflammatory and anti-apoptotic impact effects of IPTS on HUVECs. Afterwards, the expression of microtubule-associated proteins light chain 3II (LC3II) and sequestosome 1 (p62) was determined to test the effect of IPTS on autophagy. Finally, by adding an autophagy inhibitor 3-methyladenine (3-MA), we investigated whether IPTS exerts anti-inflammatory and anti-apoptotic effects through the autophagy pathway. KEY FINDINGS: We firstly demonstrated that pretreatment with IPTS could increase the cell viability, maintain the cell morphology and reduce TNF-α-induced inflammation and apoptosis of HUVECs. Moreover, IPTS pretreatment was proved to raise the expression of LC3II /LC3I while decreasing the expression of p62, which indicated that IPTS could activate HUVECs' autophagy. IPTS has been shown for the first time to exert anti-inflammatory and anti-apoptotic effects through autophagy and thereby resisting TNF-α-induced inflammatory injury of HUVECs. CONCLUSIONS: This study preliminarily confirmed that IPTS ameliorated HUVECs' inflammation and apoptosis by increasing autophagy.


Assuntos
Ilex , Saponinas , Triterpenos , Humanos , Anti-Inflamatórios/farmacologia , Apoptose , Autofagia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Ilex/química , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Saponinas/farmacologia , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/efeitos adversos
7.
Cancer Lett ; 546: 215869, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35964817

RESUMO

ARID1A, a key subunit of the SWI/SNF chromatin remodeling complex, exhibits recurrent mutations in various types of human cancers, including liver cancer. However, the function of ARID1A in the pathogenesis of liver cancer remains controversial. Here, we demonstrate that Arid1a knockout may result in states of different cell differentiation, as indicated by single-cell RNA sequencing (scRNA-seq) analysis. Bulk RNA-seq also revealed that Arid1a deficiency upregulated these genes related to cell stemness and differentiation, but downregulated genes related to the hepatic functions. Furthermore, we confirmed that deficiency of Arid1a increased the expression of hepatic stem/progenitor cell markers, such as Cd133 and Epcam, and enhanced the self-renewal ability of cells. Mechanistic studies revealed that Arid1a loss remodeled the chromatin accessibility of some genes related to liver functions. Thus, Arid1a deficiency might contribute to cancer development by increasing the number of stem/progenitor-like cells through dysregulating the expression of these genes related to cell stemness, differentiation and liver functions.


Assuntos
Neoplasias Hepáticas , Proteínas Nucleares , Cromatina , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA , Humanos , Células-Tronco , Fatores de Transcrição
8.
Biomed Chromatogr ; 36(10): e5438, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778366

RESUMO

Ilex pubescens is a famous Chinese herbal medicine, frequently used to treat cardiovascular disease in South China. In this study, we aim to explore the absorption properties of ilexgenin A (C1) and ilexsaponin B1 (C3) in vascular endothelial cells after administration of the total triterpenoid saponins from Ilex pubescens (IPTS) and clarify the possible transport mechanisms. A UPLC-qTOF-MS/MS system was used to identify the components in IPTS that could be intracellularly transported by human umbilical vein endothelial cells (HUVECs). Afterwards, a rapid, highly selective and sensitive method was established to simultaneously quantify the concentration of C1 and C3 in HUVECs after administration of IPTS. The results demonstrate that pretreatment with IPTS could promote the survival of HUVECs and reduce the damage caused by TNF-α to HUVECs. Among the main 11 components in IPTS, eight components could be absorbed by HUVECs, including seven triterpenoids and one phenolic acid. The uptake of C1 and C3 by HUVECs occurred in a time-, temperature- and concentration-dependent manner, indicating the participation of passive diffusion and active transportation mechanisms. The two triterpenoid saponins all exhibited rapid absorption and a bimodal phenomenon in their concentration-time profiles, and equilibrium could be achieved after 6 h. Furthermore, C1 and C3 intracellular transportation was regulated by serum proteins, sodium-dependent glucose transporter 1 and P-glycoprotein. The current research for the first time demonstrates the in vitro pharmacokinetics characteristics of C1 and C3 in HUVECs lines, which could supply a new way of understanding the treatment of cardiovascular diseases.


Assuntos
Ilex , Saponinas , Triterpenos , Células Endoteliais da Veia Umbilical Humana , Humanos , Saponinas/farmacologia , Espectrometria de Massas em Tandem , Triterpenos/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(25): e2204238119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35700364

RESUMO

The Anthropocene Epoch poses a critical challenge for organisms: they must cope with new threats at a rapid rate. These threats include toxic chemical compounds released into the environment by human activities. Here, we examine elevated concentrations of heavy metal ions as an example of anthropogenic stressors. We find that the fruit fly Drosophila avoids nine metal ions when present at elevated concentrations that the flies experienced rarely, if ever, until the Anthropocene. We characterize the avoidance of feeding and egg laying on metal ions, and we identify receptors, neurons, and taste organs that contribute to this avoidance. Different subsets of taste receptors, including members of both Ir (Ionotropic receptor) and Gr (Gustatory receptor) families contribute to the avoidance of different metal ions. We find that metal ions activate certain bitter-sensing neurons and inhibit sugar-sensing neurons. Some behavioral responses are mediated largely through neurons of the pharynx. Feeding avoidance remains stable over 10 generations of exposure to copper and zinc ions. Some responses to metal ions are conserved across diverse dipteran species, including the mosquito Aedes albopictus. Our results suggest mechanisms that may be essential to insects as they face challenges from environmental changes in the Anthropocene.


Assuntos
Efeitos Antropogênicos , Drosophila melanogaster , Exposição Ambiental , Reação de Fuga , Metais Pesados , Percepção Gustatória , Paladar , Aedes/fisiologia , Animais , Aprendizagem da Esquiva , Cátions/toxicidade , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Humanos , Metais Pesados/toxicidade , Receptores Ionotrópicos de Glutamato/metabolismo , Paladar/fisiologia , Percepção Gustatória/fisiologia
10.
Oncogene ; 41(10): 1397-1409, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017665

RESUMO

Hepatocellular carcinoma (HCC) has emerged as the third cause of cancer-related death owing to lacking effective systemic therapies. Genomic DNA sequencing revealed the high frequency of loss-of-function mutations in ARID2, which encodes a subunit of SWI/SNF chromatin remodeling complex, however, the therapeutic strategy for the HCC patients with ARID2 mutations is still completely unclear. In this study, we first performed a high-throughput screening approach using a compound library consisting of 2 180 FDA-approved drugs and other compounds, to elicit the potential drugs for synthetic lethality to target ARID2-deficient HCC cells. Interestingly, JQ1, a selective inhibitor of bromodomain protein BRD4, uniquely suppressed the growth of ARID2- deficient HCC cells. Next JQ1 is further confirmed to predominantly induce cell lethality upon ARID2 depletion through exacerbating DNA damage, especially double strand breaks (DSBs). Functional assays demonstrated that both BRD4 inhibition and ARID2 deficiency synergistically impede two main DNA damage repair pathways, homologous recombination (HR) and non-homologous end-joining (NHEJ), through attenuating the transcription of BRCA1, RAD51, and 53BP1, which encode the core molecules responsible for DSB repair. Mechanistically, both ARID2 and BRD4 exert a synergistic effect for maintaining transcriptional enhancer-promoter loops of these genes within chromatin conformation. However, as both ARID2 and BRD4 are disrupted, the expression of these DNA repair-related genes in response to DNA damage are hindered, resulting in DSB accumulation and cell apoptosis. Taken together, this study discloses that BRD4 inhibition may induce synthetic lethality in ARID2-deficient HCC cells, which might provide a potential therapeutic strategy for HCC patients with ARID2 mutations.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutações Sintéticas Letais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cell Death Dis ; 12(11): 990, 2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34689165

RESUMO

ARID1A, encoding a subunit of SWI/SNF chromatin remodeling complex, is widely recognized as a tumor suppressor gene in multiple tumor types including liver cancer. Previous studies have demonstrated that ARID1A deficiency can cause liver cancer metastasis, possibly due to the altered chromatin organization, however the underlying mechanisms remain poorly understood. To address the effect of Arid1a deficiency on chromatin organization, we generated chromatin interaction matrices, and exploited the conformation changes upon Arid1a depletion in hepatocytes. Our results demonstrated that Arid1a deficiency induced A/B compartment switching, topologically associated domain (TAD) remodeling, and decrease of chromatin loops. Further mechanism studies revealed that ATPase BRG1 of SWI/SNF complex could physically interact with RAD21, a structural subunit of chromatin architectural element cohesin; whereas ARID1A deficiency significantly diminished the coupled BRG1-RAD21. Interestingly, the tumor-associated genes within the switched compartments were differentially expressed depending upon Arid1a depletion or not. As a consequence of ARID1A deficiency-induced conformational alteration, the dysregulation of some genes such as PMP22 and GSC, promoted the invasion capacity of liver cancer cells. This study provides an insight into liver cancer tumorigenesis and progression related to ARID1A mutations.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/deficiência , Neoplasias Hepáticas/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Metástase Neoplásica , Transfecção
12.
Arch Biochem Biophys ; 705: 108894, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965368

RESUMO

Accumulating evidence suggests that vitamin D (VD) has a therapeutic effect on non-alcoholic fatty liver disease (NAFLD). Pyroptosis and gut microbiota have been recognized as critical factors of the progression of NAFLD. However, the effect of VD on the pyroptosis and gut microbiota in NAFLD remains inconclusive. Herein, rats were fed high fat diet (HFD) for 12 weeks and concurrently treated with 5 µg/kg 1,25(OH)2D3 twice a week. BRL-3A cells were stimulated with 0.4 mmol/L palmitic acid (PA) and 1 µg/ml lipopolysaccharide (LPS) for 16 h and treated with 10-6 mol/L 1,25(OH)2D3. Effect of VD on the hepatic injury, lipid accumulation, activation of NLRP3 inflammasome and pyroptosis was determined in vivo and in vitro. Next, gasdermin D N-terminal (GSDMD-N) fragment was overexpressed in BRL-3A cells to investigate the role of pyroptosis in the therapeutic effect of VD on NAFLD. In addition, gut microbiota in NAFLD rats was also analyzed. Results showed that VD attenuated HFD-induced hepatic injury in vivo and PA-LPS-induced impairment of cell viability in vitro, and inhibited lipid accumulation, activation of NLRP3 inflammasome and pyroptosis in vivo and in vitro. GSDMD-N fragment overexpression suppressed the protective effect of VD on PA-LPS-induced activation of NLRP3 inflammasome, impairment of cell viability and lipid accumulation, indicating that VD might attenuate NAFLD through inhibiting pyroptosis. Additionally, VD also restored HFD-induced gut microbiota dysbiosis by increasing the relative abundance of Lactobacillus and reducing that of Acetatifactor, Oscillibacter and Flavonifractor. This study provides a novel mechanism underlying VD therapy against NAFLD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/microbiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ratos
13.
J Pharmacol Exp Ther ; 377(2): 254-264, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33658315

RESUMO

Bariatric surgery is the most common and effective treatment of severe obesity; however, these bariatric procedures always result in detrimental effects on bone metabolism by underlying mechanisms. This study aims to investigate the skeletal response to bariatric surgery and to explore whether Clostridium butyricum alleviates gut microbiota alteration-induced bone loss after bariatric surgery. Consequently, male SD rats received Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) surgery, respectively, followed by body weight recording. The bone loss after bariatric surgery was further determined by dual-energy X-ray absorptiometry (DXA), micro-CT measurement, histologic analyses, and Western blot. Besides, 16S rDNA gene sequencing was performed to determine the gut microbiota alteration after surgery, and intervention with fecal microbiota from RYGB donor was conducted in obese SD rats, followed by C. butyricum administration. Accordingly, rats in the RYGB and SG groups maintained sustained weight loss, and DXA and micro-CT measurement further demonstrated significant bone loss after bariatric surgery. Besides, histologic and Western blot analyses validated enhanced osteoclastogenesis and inhibited osteoblastogenesis and defective autophagy after surgery. The 16S rDNA gene sequencing suggested a significant alteration of gut microbiota composition in the RYGB group, and intervention with fecal microbiota from RYGB donor further determined that this kind of alteration contributed to the bone loss after RYGB. Meanwhile, C. butyricum might protect against this postoperative bone loss by promoting osteoblast autophagy. In summary, this study suggests novel mechanisms to clarify the skeletal response to bariatric surgery and provides a potential candidate for the treatment of bone disorder among bariatric patients. SIGNIFICANCE STATEMENT: The significance of this study is the discovery of obvious bone loss and defective autophagy after bariatric surgery. Besides, it is revealed that gut microbiota alterations could be the reason for impaired bone mass after bariatric surgery. Furthermore, Clostridium butyricum could alleviate the gut microbiota alteration-induced bone loss after bariatric surgery by promoting osteoblast autophagy.


Assuntos
Cirurgia Bariátrica/efeitos adversos , Reabsorção Óssea/terapia , Clostridium butyricum/patogenicidade , Microbioma Gastrointestinal , Complicações Pós-Operatórias/terapia , Animais , Autofagia , Reabsorção Óssea/etiologia , Reabsorção Óssea/microbiologia , Masculino , Osteoblastos/metabolismo , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/microbiologia , Ratos , Ratos Sprague-Dawley
14.
BMC Med Genomics ; 13(Suppl 6): 62, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854726

RESUMO

BACKGROUND: High-throughput sequencing technology has yielded reliable and ultra-fast sequencing for DNA and RNA. For tumor cells of cancer patients, when combining the results of DNA and RNA sequencing, one can identify potential neoantigens that stimulate the immune response of the T cell. However, when the somatic mutations are abundant, it is computationally challenging to efficiently prioritize the identified neoantigen candidates according to their ability of activating the T cell immuno-response. METHODS: Numerous prioritization or prediction approaches have been proposed to address this issue but none of them considers the original DNA loci of the neoantigens from the perspective of 3D genome. Based on our previous discoveries, we propose to investigate the distribution of neoantigens with different immunogenicity abilities in 3D genome and propose to adopt this important information into neoantigen prediction. RESULTS: We retrospect the DNA origins of the immuno-positive and immuno-negative neoantigens in the context of 3D genome and discovered that DNA loci of the immuno-positive neoantigens and immuno-negative neoantigens have very different distribution pattern. Specifically, comparing to the background 3D genome, DNA loci of the immuno-positive neoantigens tend to locate at specific regions in the 3D genome. We thus used this information into neoantigen prediction and demonstrated the effectiveness of this approach. CONCLUSION: We believe that the 3D genome information will help to increase the precision of neoantigen prioritization and discovery and eventually benefit precision and personalized medicine in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/química , Cromatina/química , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina de Precisão , Conformação Proteica
15.
Biomed Chromatogr ; 33(11): e4657, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31334861

RESUMO

Oroxylum indicum, as a popular functional Chinese herbal medicine for reducing hyperactivity, relieving sore throat, smoothing the liver and adjusting stomach, mainly contains flavonoids. In this study, we aimed to establish a fast and sensitive method that enables to analyze the chemical components in O. indicum qualitatively and quantitatively. First, a total of 42 components were characterized by LC-quadrupole time-of-flight (qTOF)-tandem mass spectrometry (MS/MS), including 23 flavonoid glycosides, 13 flavonoids and six other types of compounds. Then, 17 characteristic components of the 19 common peaks in the chromatographic fingerprints of O. indicum were confirmed. Fifty samples were classified into two groups by hierarchical clustering analysis and orthogonal partial least squares-discriminant analysis, which also identified the 10 main chemical markers responsible for differences between samples. Last, the quantitative analysis of multiple components with a single marker method was established for simultaneous determination of six main active components in O. indicum by LC-UV with oroxin B was chosen as internal reference substance. Finally, a rapid and efficient method integrating HPLC with LC-electrospray ionization-qTOF-MS/MS analysis was established to comprehensively discriminate and assess the quality of O. indicum samples.


Assuntos
Bignoniaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem/métodos , Análise por Conglomerados , Flavonoides/análise , Flavonoides/química , Glicosídeos/análise , Glicosídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212584

RESUMO

Insulin signaling is mediated by a highly integrated network that controls glucose metabolism, protein synthesis, cell growth, and differentiation. Our previous work indicates that the insulin receptor tyrosine kinase substrate (IRTKS), also known as BAI1-associated protein 2-like 1 (BAIAP2L1), is a novel regulator of insulin network, but the mechanism has not been fully studied. In this work we reveal that IRTKS co-localizes with Src homology (SH2) containing inositol polyphosphate 5-phosphatase-2 (SHIP2), and the SH3 domain of IRTKS directly binds to SHIP2's catalytic domain INPP5c. IRTKS suppresses SHIP2 phosphatase to convert phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3, PIP3) to phosphatidylinositol (3,4) bisphosphate (PI(3,4)P2). IRTKS-knockout significantly increases PI(3,4)P2 level and decreases cellular PI(3,4,5)P3 content. Interestingly, the interaction between IRTKS and SHIP2 is dynamically regulated by insulin, which feeds back and affects the tyrosine phosphorylation of IRTKS. Furthermore, IRTKS overexpression elevates PIP3, activates the AKT-mTOR signaling pathway, and increases cell proliferation. Thereby, IRTKS not only associates with insulin receptors to activate PI3K but also interacts with SHIP2 to suppress its activity, leading to PIP3 accumulation and the activation of the AKT-mTOR signaling pathway to modulate cell proliferation.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Imunoprecipitação , Insulina/metabolismo , Proteínas dos Microfilamentos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética , Fosforilação/genética , Fosforilação/fisiologia , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
17.
PLoS Biol ; 17(5): e2006619, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31112532

RESUMO

The Drosophila wing was proposed to be a taste organ more than 35 years ago, but there has been remarkably little study of its role in chemoreception. We carry out a differential RNA-seq analysis of a row of sensilla on the anterior wing margin and find expression of many genes associated with pheromone and chemical perception. To ask whether these sensilla might receive pheromonal input, we devised a dye-transfer paradigm and found that large, hydrophobic molecules comparable to pheromones can be transferred from one fly to the wing margin of another. One gene, Ionotropic receptor (IR)52a, is coexpressed in neurons of these sensilla with fruitless, a marker of sexual circuitry; IR52a is also expressed in legs. Mutation of IR52a and optogenetic silencing of IR52a+ neurons decrease levels of male sexual behavior. Optogenetic activation of IR52a+ neurons induces males to show courtship toward other males and, remarkably, toward females of another species. Surprisingly, IR52a is also required in females for normal sexual behavior. Optogenetic activation of IR52a+ neurons in mated females induces copulation, which normally occurs at very low levels. Unlike other chemoreceptors that act in males to inhibit male-male interactions and promote male-female interactions, IR52a acts in both males and females, and can promote male-male as well as male-female interactions. Moreover, IR52a+ neurons can override the circuitry that normally suppresses sexual behavior toward unproductive targets. Circuit mapping and Ca2+ imaging using the trans-Tango system reveals second-order projections of IR52a+ neurons in the subesophageal zone (SEZ), some of which are sexually dimorphic. Optogenetic activation of IR52a+ neurons in the wing activates second-order projections in the SEZ. Taken together, this study provides a molecular description of the chemosensory sensilla of a greatly understudied taste organ and defines a gene that regulates the sexual circuitry of the fly.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Feromônios/metabolismo , Sensilas/metabolismo , Asas de Animais/metabolismo , Animais , Proteínas de Drosophila/genética , Feminino , Inativação Gênica , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Masculino , Neurônios/metabolismo , Optogenética , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Paladar/fisiologia
18.
EBioMedicine ; 42: 481-493, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30879920

RESUMO

BACKGROUND: Although significant progress has been made in understanding the mechanisms of steatosis and insulin resistance, the physiological functions of the epigenetic regulators in these processes remain largely elusive. METHODS: Hepatocyte-specific Arid1a knockout mice were administrated with high-fat diet (HFD) for 12 weeks, then insulin sensitivity was assessed by glucose tolerance test (GTT) and insulin tolerance test (ITT). The metabolism-related indicators were determined by employing a variety of biological methods, including histology, real-time PCR, enzyme-linked immunosorbent assay (ELISA), Western blotting assay, Chromatin immunoprecipitation (ChIP), RNA-seq and assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). FINDINGS: Hepatocyte-specific Arid1a deletion significantly increases susceptibility to develop hepatic steatosis, insulin resistance and inflammation in mice fed a HFD. In vitro, Arid1a deletion in isolated hepatocytes directly leads to free fatty acid-induced lipid accumulation and insulin resistance. Mechanically, Arid1a deficiency impairs fatty acid oxidation by downregulating PPARα and altering the epigenetic landscape of some metabolism genes. INTERPRETATION: These findings reveal that targeting Arid1a might be a promising therapeutic strategy for liver steatosis and insulin resistance. FUND: This work was supported by National Natural Science Foundation of China (81672772 and 81472621), China National Science and Technology Major Project for Prevention and Treatment of Infectious Diseases (No.2017ZX 10203207) and National Program on Key Research Project of China (grant no. 2016YFC0902701).


Assuntos
Proteínas de Ligação a DNA/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Proteínas Nucleares/genética , Animais , Suscetibilidade a Doenças , Glucose/metabolismo , Hepatócitos/metabolismo , Histonas/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Ativados por Proliferador de Peroxissomo , Transdução de Sinais , Fatores de Transcrição
19.
Molecules ; 23(4)2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-29642536

RESUMO

The quantitative analysis of multiple components with a single marker (QAMS) method was firstly established for simultaneous determination of 18 active components in Ilex kudingcha C. J. Tseng by HPLC. Using rutin, isochlorogenic acid A and kudinoside A as internal refererence substances (IRS), compatibility results showed that the relative correction factors (RCFs) of all compounds showed good reproducibility under different chromatographic conditions. On the basis of previous studies, the accuracy of the QAMS method was systematically evaluated by investigating the influences of curve intercept, analytes and IRS concentration. The results showed that the concentration (especially at low level) of analytes and curve intercept were the major influencing parameters for the LRG-QAMS method (LRG = linear regression), whereas the influence of IRS concentration seemed more apparent in terms of the AVG-QAMS method (AVG = average). The two approaches were complementary with each other. In addition, hierarchical clustering analysis (HCA), principal components analysis (PCA) and similarity analysis (SA) were performed to differentiate and classify the samples based on the contents of 18 marker compounds. The results of the different chemometric analyses were completely consistent with each other, and could be supported by the quantification results.


Assuntos
Medicamentos de Ervas Chinesas/química , Ilex/química , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/química , Cromatografia Líquida de Alta Pressão/métodos , Análise por Conglomerados , Simulação por Computador , Análise de Componente Principal , Controle de Qualidade , Reprodutibilidade dos Testes , Saponinas/química , Triterpenos/química
20.
J Pharm Biomed Anal ; 155: 15-26, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29605682

RESUMO

In this study, a systematic method was established for the holistic quality control of Ilex kudingcha C. J. Tseng, a popular functional drink for adjuvant treatment of diabetes, hypertension, obesity and hyperlipidemia. Both qualitative and quantitative analyses were conducted. For qualitative analysis, an ultra high performance liquid chromatography (UHPLC) coupled with an electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-qTOF-MS) method was established for rapid separation and structural identification of the constituents in Ilex kudingcha. Samples were separated on an ACQUITY UPLC HSS T3C18 column (2.1 mm × 100 mm, 1.8 µm) by gradient elution using 0.1% (v/v) formic acid (solvent A) and acetonitrile (solvent B) as mobile phases at a flow rate of 0.25 mL min-1. The chromatographic profiling of Ilex kudingcha by UHPLC-qTOF-MS/MS resulted in the characterization of 53 compounds, comprising 18 compounds that were unambiguously identified by comparison with reference standards. For quantitative analysis, 18 major compounds from 15 batches of Ilex kudingcha samples were simultaneously detected by UPLC-DAD at wavelengths of 210 nm, 260 nm, and 326 nm. The method was validated with respect to precision, linearity, repeatability, stability, accuracy, and so on. The contents of the 18 target compounds were applied for hierarchical clustering analysis (HCA) and principal component analysis (PCA) to differentiate between the samples. The results of HCA and PCA were consistent with each other. Sample No. 1 differed significantly based on HCA and PCA, and the differentiating components were confirmed to originate from different batches of samples. Phenolic acids and triterpenes were found to be the main ingredients in Ilex kudingcha. This strategy was effective and straightforward, and provided a potential approach for holistic quality control of Ilex kudingcha.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ilex/química , Espectrometria de Massas em Tandem/métodos , Hidroxibenzoatos/química , Análise de Componente Principal/métodos , Controle de Qualidade , Espectrometria de Massas por Ionização por Electrospray/métodos , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA