Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Light Sci Appl ; 12(1): 62, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869071

RESUMO

Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices. However, judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology, composition, and defect. Herein, we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization. The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX3 perovskite, respectively. The formation of supramolecular structure retard perovskite nucleation, while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth. This judicious control enables a segmented growth, inducing the growth of insular nanocrystal consist of low-dimensional structure. Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%, ranking among the highest efficiency achieved. The homogeneous nano-island structure also enables high-efficiency large area (1 cm2) device up to 21.6%, and a record high value of 13.6% for highly semi-transparent ones.

2.
ACS Appl Mater Interfaces ; 13(40): 47603-47609, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582165

RESUMO

The development of methodologies for synthesizing carrier-transporting materials is critical for optoelectronic device fabrication. Amorphous metal oxides have emerged as potential carrier transport materials for perovskite tandem solar cells and flexible electronics due to their ease of fabrication and excellent electronic properties. However, perovskite solar cells employing amorphous metal oxides as the electron-transporting layers (ETLs) remain inefficient. This research describes a moderate dehydration reaction for the low-temperature synthesis of amorphous SnOx. We investigated this amorphous SnOx as the ETL for perovskite solar cells and demonstrated a maximum power conversion efficiency (PCE) of 20.4%, the greatest efficiency ever attained with an amorphous metal oxide ETL produced below 100 °C. Remarkably, the device maintained 85% of its initial efficiency for more than 4800 h. Furthermore, flexible perovskite solar cells based on this amorphous SnOx have a maximum PCE of 11.7%. Finally, this amorphous SnOx was used to fabricate LEDs and exhibited a maximum external quantum efficiency of over 3%.

3.
Soft Matter ; 16(36): 8372-8379, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32812974

RESUMO

The optical responses of molecules and materials provide a basis for chemical measurement and imaging. The optical diffraction limit in conventional light microscopy is exceeded by mechanically probing optical absorption through the photothermal effect with atomic force microscopy (AFM). However, the spatial resolution of AFM-based photothermal optical microscopy is still limited, and the sample surface is prone to damage from scratching due to tip contact, particularly for measurements on soft matter. In this article, we develop peak force visible (PF-vis) microscopy for the measurement of visible optical absorption of soft matter. The spatial resolution of PF-vis microscopy is demonstrated to be 3 nm on green fluorescent protein-labeled virus-like particles, and the imaging sensitivity may approach a single protein molecule. On organic photovoltaic polymers, the spatial distribution of the optical absorption probed by PF-vis microscopy is found to be dependent on the diffusion ranges of excitons in the donor domain. Through finite element modeling and data analysis, the exciton diffusion range of organic photovoltaics can be directly extracted from PF-vis images, saving the need for complex and delicate sample preparations. PF-vis microscopy will enable high-resolution nano-imaging based on light absorption of fluorophores and chromophores, as well as deciphering the correlation between the spatial distribution of photothermal signals and underlying photophysical parameters at the tens of nanometer scale.


Assuntos
Corantes Fluorescentes , Nanotecnologia , Proteínas de Fluorescência Verde , Microscopia de Força Atômica , Polímeros
4.
Nat Commun ; 11(1): 1245, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144245

RESUMO

Tin perovskite is rising as a promising candidate to address the toxicity and theoretical efficiency limitation of lead perovskite. However, the voltage and efficiency of tin perovskite solar cells are much lower than lead counterparts. Herein, indene-C60 bisadduct with higher energy level is utilized as an electron transporting material for tin perovskite solar cells. It suppresses carrier concentration increase caused by remote doping, which significantly reduces interface carriers recombination. Moreover, indene-C60 bisadduct increases the maximum attainable photovoltage of the device. As a result, the use of indene-C60 bisadduct brings unprecedentedly high voltage of 0.94 V, which is over 50% higher than that of 0.6 V for device based on [6,6]-phenyl-C61-butyric acid methyl ester. The device shows a record power conversion efficiency of 12.4% reproduced in an accredited independent photovoltaic testing lab.

5.
Angew Chem Int Ed Engl ; 59(15): 5979-5987, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31957946

RESUMO

Lead halide perovskites with mixed cations/anions often suffer from phase segregation, which is detrimental to device efficiency and their long-term stability. During perovskite film growth, the gel stage (in between liquid and crystalline) correlates to phase segregation, which has been rarely explored. Herein, cation diffusion kinetics are systematically investigated at the gel stage to develop a diffusion model obeying Fick's second law. Taking 2D layered perovskite as an example, theoretical and experimental results reveal the impact of diffusion coefficient, temperature, and gel duration on the film growth and phase formation. A homogenous 2D perovskite thin film was then fabricated without significant phase segregation. This in-depth understanding of gel stage and relevant cation diffusion kinetics would further guide the design and processing of halide perovskites with mixed composition to meet requirements for optoelectronic applications.

6.
Sci Adv ; 5(8): eaaw8072, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31453330

RESUMO

Organic-inorganic hybrid halide perovskites are emerging as promising materials for next-generation light-emitting diodes (LEDs). However, the poor stability of these materials has been the main obstacle challenging their application. Here, we performed first-principles calculations, revealing that the molecule dissociation energy of Dion-Jacobson (DJ) structure using 1,4-bis(aminomethyl)benzene molecules as bridging ligands is two times higher than the typical Ruddlesden-Popper (RP) structure based on phenylethylammonium ligands. Accordingly, LEDs based on the DJ structure show a half-lifetime over 100 hours, which is almost two orders of magnitude longer compared with those based on RP structural quasi-two-dimensional perovskite. To the best of our knowledge, this is the longest lifetime reported for all organic-inorganic hybrid perovskites operating at the current density, giving the highest external quantum efficiency (EQE) value. In situ tracking of the film composition in operation indicates that the DJ structure was maintained well after continuous operation under an electric field.

7.
Chem Commun (Camb) ; 55(64): 9483-9486, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328204

RESUMO

Quantum dot light emitting diodes (QLEDs) are rising as a promising light emitting technology. However, the widely used insulating organic ligands hamper carrier injection. Herein, we developed a bi-inorganic-ligand strategy to replace organic ligands and dispersed QDs in a benign solvent butylamine. The all-inorganic QD film shows enhanced luminescence intensity and superior thermal stability and conductivity. In the end, we exploited the first prototype all inorganic QLED.

8.
Nat Commun ; 10(1): 665, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737389

RESUMO

Quantum efficiencies of organic-inorganic hybrid lead halide perovskite light-emitting devices (LEDs) have increased significantly, but poor device operational stability still impedes their further development and application. All-inorganic perovskites show better stability than the hybrid counterparts, but the performance of their respective films used in LEDs is limited by the large perovskite grain sizes, which lowers the radiative recombination probability and results in grain boundary related trap states. We realize smooth and pinhole-free, small-grained inorganic perovskite films with improved photoluminescence quantum yield by introducing trifluoroacetate anions to effectively passivate surface defects and control the crystal growth. As a result, efficient green LEDs based on inorganic perovskite films achieve a high current efficiency of 32.0 cd A-1 corresponding to an external quantum efficiency of 10.5%. More importantly, our all-inorganic perovskite LEDs demonstrate a record operational lifetime, with a half-lifetime of over 250 h at an initial luminance of 100 cd m-2.

9.
ACS Appl Mater Interfaces ; 10(40): 34363-34369, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192511

RESUMO

Recently, layered perovskites attracted great attention for its excellent stability and light-emitting property. However, most of them rely on the toxic element lead and their emission quantum yields are generally low. Here, a unique hollow two-dimensional perovskite was developed in which the organic hexamethylene diamines (C6H18N22+) strongly coupled with distorted tin bromide anions (SnBr64-). This toxic-free low-dimensional tin perovskite exhibits a broadband emission in the visible region with a high luminescence quantum yield of 86%. First-principles calculation indicate the broadband emission is associated with the recombination of self-trapped excitons. And the emission is related to the geometry of tin bromide anions. An ultraviolet light-pumped white light emitting diode with excellent color-rendering index of 94 was fabricated using it together with a commercially available blue phosphor.

10.
Adv Mater ; 30(16): e1705968, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516606

RESUMO

Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce.


Assuntos
Nanoestruturas , Biofilmes , Escherichia coli , Nanotecnologia , Pontos Quânticos
11.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315851

RESUMO

Highly efficient PbS colloidal quantum dot (QD) solar cells based on an inverted structure have been missing for a long time. The bottlenecks are the construction of an effective p-n heterojunction at the illumination side with smooth band alignment and the absence of serious interface carrier recombination. Here, solution-processed nickel oxide (NiO) as the p-type layer and lead sulfide (PbS) QDs with iodide ligand as the n-type layer are explored to build a p-n heterojunction at the illumination side. The large depletion region in the QD layer at the illumination side leads to high photocurrent. Interface carrier recombination at the interface is effectively prohibited by inserting a layer of slightly doped p-type QDs with 1,2-ethanedithiol as ligands, leading to improved voltage of the device. Based on this graded device structure design, the efficiency of inverted structural heterojunction PbS QD solar cells is improved to 9.7%, one time higher than the highest efficiency achieved before.

12.
J Am Chem Soc ; 140(2): 562-565, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29249159

RESUMO

Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m2 luminance, surpassing by far LEDs made from the nonpassivated NCs.

13.
J Am Chem Soc ; 139(19): 6693-6699, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438016

RESUMO

The low toxicity and a near-ideal choice of bandgap make tin perovskite an attractive alternative to lead perovskite in low cost solar cells. However, the development of Sn perovskite solar cells has been impeded by their extremely poor stability when exposed to oxygen. We report low-dimensional Sn perovskites that exhibit markedly enhanced air stability in comparison with their 3D counterparts. The reduced degradation under air exposure is attributed to the improved thermodynamic stability after dimensional reduction, the encapsulating organic ligands, and the compact perovskite film preventing oxygen ingress. We then explore these highly oriented low-dimensional Sn perovskite films in solar cells. The perpendicular growth of the perovskite domains between electrodes allows efficient charge carrier transport, leading to power conversion efficiencies of 5.94% without the requirement of further device structure engineering. We tracked the performance of unencapsulated devices over 100 h and found no appreciable decay in efficiency. These findings raise the prospects of pure Sn perovskites for solar cells application.

14.
Adv Mater ; 29(22)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28397299

RESUMO

Hydrogen generation via photocatalysis-driven water splitting provides a convenient approach to turn solar energy into chemical fuel. The development of photocatalysis system that can effectively harvest visible light for hydrogen generation is an essential task in order to utilize this technology. Herein, a kind of cadmium free Zn-Ag-In-S (ZAIS) colloidal quantum dots (CQDs) that shows remarkably photocatalytic efficiency in the visible region is developed. More importantly, a nanocomposite based on the combination of 0D ZAIS CQDs and 2D MoS2 nanosheet is developed. This can leverage the strong light harvesting capability of CQDs and catalytic performance of MoS2 simultaneously. As a result, an excellent external quantum efficiency of 40.8% at 400 nm is achieved for CQD-based hydrogen generation catalyst. This work presents a new platform for the development of high-efficiency photocatalyst based on 0D-2D nanocomposite.

15.
Sci Bull (Beijing) ; 62(5): 369-380, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36659422

RESUMO

Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes (LEDs), photodetectors and lasers as well. Rapid advances in bulk perovskite materials aroused universal interest for the development of perovskite nanocrystals, inspired by the great progress of classic colloidal semiconductor quantum dots. Perovskite nanocrystals have been synthesized based on solution process and exhibited high luminescence quantum yield, sharp emission peak, and emission color tunability. Significant progresses have been made about the application of perovskite nanocrystals for LED and lasers in recent years. In this paper, we will comprehensively introduce the synthesis strategies, physical and chemical characteristics, as well as their applications in optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA