Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 15(1): 3440, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653977

RESUMO

Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Fatores de Transcrição , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Fatores de Transcrição NFATC/metabolismo , Glucose Oxidase/metabolismo , Animais
2.
Res Sq ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205449

RESUMO

Oxidative stress from excess H2O2 activates transcription factors (TFs) that restore redox balance and repair oxidative damage. Though many TFs are activated by H2O2, it is unknown whether they are activated at the same H2O2 concentration or time after H2O2 stress. We found TF activation is tightly coordinated over time and dose dependent. We first focused on p53 and FOXO1 and found that in response to low H2O2, p53 is activated rapidly while FOXO1 remains inactive. In contrast, cells respond to high H2O2 in two temporal phases. In the first phase FOXO1 rapidly shuttles to the nucleus while p53 remains inactive. In the second phase FOXO1 shuts off and p53 levels rise. Other TFs are activated in the first phase with FOXO1 (NF-κB, NFAT1), or the second phase with p53 (NRF2, JUN), but not both. The two phases result in large differences in gene expression. Finally, we provide evidence that 2-Cys peroxiredoxins control which TF are activated and the timing of TF activation.

3.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945409

RESUMO

The p53 and FOXO transcription factors (TFs) share many similarities despite their distinct evolutionary origins. Both TFs are activated by a variety of cellular stresses and upregulate genes in similar pathways including cell-cycle arrest and apoptosis. Oxidative stress from excess H2O2 activates both FOXO1 and p53, yet whether they are activated at the same time is unclear. Here we found that cells respond to high H2O2 levels in two temporal phases. In the first phase FOXO1 rapidly shuttles to the nucleus while p53 levels remain low. In the second phase FOXO1 exits the nucleus and p53 levels rise. We found that other oxidative stress induced TFs are activated in the first phase with FOXO1 (NF-κB, NFAT1), or the second phase with p53 (NRF2, JUN) but not both following H2O2 stress. The two TF phases result in large differences in gene expression patterns. Finally, we provide evidence that 2-Cys peroxiredoxins control the timing of the TF phases in response to H2O2.

4.
Mol Biol Cell ; 34(3): ar21, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735481

RESUMO

FOXO transcription factors are regulators of cellular homeostasis linked to increased lifespan and tumor suppression. FOXOs are activated by diverse cell stresses including serum starvation and oxidative stress. FOXO activity is regulated through posttranslational modifications that control shuttling of FOXO proteins to the nucleus. In the nucleus, FOXOs up-regulate genes in multiple, often conflicting pathways, including cell-cycle arrest and apoptosis. How cells control FOXO activity to ensure the proper response for a given stress is an open question. Using quantitative immunofluorescence and live-cell imaging, we found that the dynamics of FOXO nuclear shuttling is stimulus-dependent and corresponds with cell fate. H2O2 treatment leads to an all-or-none response where some cells show no nuclear FOXO accumulation, while other cells show a strong nuclear FOXO signal. The time that FOXO remains in the nucleus increases with the dose and is linked with cell death. In contrast, serum starvation causes low-amplitude pulses of nuclear FOXO and predominantly results in cell-cycle arrest. The accumulation of FOXO in the nucleus is linked with low AKT activity for both H2O2 and serum starvation. Our findings suggest the dynamics of FOXO nuclear shuttling is one way in which the FOXO pathway dictates different cellular outcomes.


Assuntos
Fatores de Transcrição Forkhead , Peróxido de Hidrogênio , Diferenciação Celular , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Linhagem da Célula
5.
Proc Natl Acad Sci U S A ; 107(50): 21605-10, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21098663

RESUMO

Genomic rearrangements are common, occur by largely unknown mechanisms, and can lead to human diseases. We previously demonstrated that some genome rearrangements occur in budding yeast through the fusion of two DNA sequences that contain limited sequence homology, lie in inverted orientation, and are within 5 kb of one another. This inverted repeat fusion reaction forms dicentric chromosomes, which are well-known intermediates to additional rearrangements. We have previously provided evidence indicating that an error of stalled or disrupted DNA replication forks can cause inverted repeat fusion. Here we analyze how checkpoint protein regulatory pathways known to stabilize stalled forks affect this form of instability. We find that two checkpoint pathways suppress inverted repeat fusion, and that their activities are distinguishable by their interactions with exonuclease 1 (Exo1). The checkpoint kinase Rad53 (Chk2) and recombination protein complex MRX(MRN) inhibit Exo1 in one pathway, whereas in a second pathway the ATR-like kinases Mec1 and Tel1, adaptor protein Rad9, and effector kinases Chk1 and Dun1 act independently of Exo1 to prevent inverted repeat fusion. We provide a model that indicates how in Rad53 or MRX mutants, an inappropriately active Exo1 may facilitate faulty template switching between nearby inverted repeats to form dicentric chromosomes. We further investigate the role of Rad53, using hypomorphic alleles of Rad53 and null mutations in Rad9 and Mrc1, and provide evidence that only local, as opposed to global, activity of Rad53 is sufficient to prevent inverted repeat fusion.


Assuntos
Cromossomos Fúngicos/genética , Exodesoxirribonucleases/metabolismo , Rearranjo Gênico , Genes cdc , Sequências Repetidas Invertidas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Exodesoxirribonucleases/genética , Instabilidade Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Genes Dev ; 23(24): 2861-75, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20008936

RESUMO

Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term "faulty template switching"). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms.


Assuntos
Cromossomos Fúngicos/genética , Replicação do DNA/genética , DNA Fúngico/genética , Instabilidade Genômica , Sequências Repetidas Invertidas/genética , Saccharomyces cerevisiae/genética , Quebras de DNA , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Genes Dev ; 20(2): 159-73, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16384935

RESUMO

We report here that a normal budding yeast chromosome (ChrVII) can undergo remarkable cycles of chromosome instability. The events associated with cycles of instability caused a distinctive "sectoring" of colonies on selective agar plates. We found that instability initiated at any of several sites on ChrVII, and was sharply increased by the disruption of DNA replication or by defects in checkpoint controls. We studied in detail the cycles of instability associated with one particular chromosomal site (the "403 site"). This site contained multiple tRNA genes known to stall replication forks, and when deleted, the overall frequency of sectoring was reduced. Instability of the 403 site involved multiple nonallelic recombination events that led to the formation of a monocentric translocation. This translocation remained unstable, frequently undergoing either loss or recombination events linked to the translocation junction. These results suggest a model in which instability initiates at specific chromosomal sites that stall replication forks. Forks not stabilized by checkpoint proteins break and undergo multiple rounds of nonallelic recombination to form translocations. Some translocations remain unstable because they join two "incompatible" chromosomal regions. Cycles of instability of this normal yeast chromosome may be relevant to chromosome instability of mammalian fragile sites and of chromosomes in cancer cells.


Assuntos
Instabilidade Cromossômica , Sítios Frágeis do Cromossomo , Replicação do DNA , Genes cdc/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fragilidade Cromossômica , Sequência de DNA Instável , Regulação Fúngica da Expressão Gênica , Rearranjo Gênico , Hibridização in Situ Fluorescente , Modelos Genéticos , RNA de Transferência/genética , Recombinação Genética , Saccharomyces cerevisiae/enzimologia , Análise de Sequência de DNA , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA