Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768757

RESUMO

Nanoparticles composed of Levan and Dolutegravir (DTG) have been successfully synthesized using a spray drying procedure specifically designed for milk/food admixture applications. Levan, obtained from the microorganism Bacillus subtilis, was thoroughly characterized using MALDI-TOF and solid-state NMR technique to confirm its properties. In the present study, this isolated Levan was utilized as a carrier for drug delivery applications. The optimized spray-dried nanoparticles exhibited a smooth surface morphology with particle sizes ranging from 195 to 329 nm. In the in-vitro drug release experiments conducted in water media, the spray-dried nanoparticles showed 100 % release, whereas the unprocessed drug exhibited only 50 % release at the end of 24 h. Notably, the drug release in milk was comparable to that in plain media, indicating the compatibility. The improved dissolution rate observed for the nanoparticles could be attributed to the solid-state conversion (confirmed by XRD analysis) of DTG from its crystalline to amorphous state. The stability of the drug was verified using Fourier Transform Infra-Red Spectroscopy and Thermogravimetry-Differential Scanning Calorimetry analysis. To evaluate the in-vitro cellular toxicity, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was conducted, which revealed the CC50 value of 88.88 ± 5.10 µg/mL for unprocessed DTG and 101.08 ± 37.37 µg/mL for DTG nanoparticles. These results indicated that the toxicity of the nanoparticles was comparable to the unprocessed drug. Furthermore, the anti-HIV activity of the nanoparticles in human cell lines was found to be similar to that of the pure drug, emphasizing the therapeutic efficacy of DTG in combating HIV.

2.
Sci Total Environ ; 925: 171116, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382596

RESUMO

Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.


Assuntos
Poluentes Ambientais , Plásticos , Humanos , Animais , Biodegradação Ambiental , Insetos
3.
Heliyon ; 9(6): e17424, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484316

RESUMO

An alternate medium consisting of sugarcane juice (SJ) (Saccharum spp.) and chicken feather peptone (CFP) was employed for microbial synthesis of levan. SJ has considerable amounts of vital minerals, vitamins, and amino acids in addition to its major constituent, sucrose. Meanwhile, CFP is also a rich source of essential nutrients such as amino acids, micro and macro elements. Amino acids present in SJ and CFP, such as glutamic acid, arginine, aspartic acid, asparagine and elements such as Ca, Mg favoured the cell growth and levan production. In this present work, levan was produced using Bacillus subtilis MTCC 441 in five different media, namely, sucrose along with defined nutrients (M1), Sugarcane Juice without nutrients (M2), SJ with defined nutrients (M3), SJ along with chicken feather peptone (M4) and sucrose without nutrient (M5). Alternative nutrient medium using SJ and CFP (M4) showed a promising levan yield of 0.32 ± 0.01 g of levan/g of sucrose consumed, which is 64% of the theoretical levan yield possible. Levan produced was characterized using Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). There is a change in low molecular weight fractions of levan obtained from SJ and CFP medium compared to the defined medium. Produced levan from the composite medium exhibited strong antioxidant activity and was biocompatible when tested against endothelial cells. The substrate cost was 20% lower than the cost of defined medium. Thus, a composite medium made of SJ and CFP can serve as an alternate low-cost medium for microbial fermentation.

4.
J Biomol Struct Dyn ; 41(24): 15386-15399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927454

RESUMO

The fungi, Cryptococcus neoformans cause major infections such as cryptococcal meningitis and cryptococcosis. Therefore, we explored the use of Thioredoxin reductase (Trr1) from C. neoformans as a gene target for the development of novel antifungal agents. Trr1 plays an essential role in the survival in the oxidative environment of macrophages and is important for the virulence of C. neoformans. During the thermochemical conversion (pyrolysis) of lignocellulosic biomass (LCB), a cocktail of compounds is produced by the decomposition and degradation. In general, LCB-derived cocktail of compounds is a rich source of aromatic compounds that have been shown to be antifungal in nature. Usually, the aqueous phase produced during biomass pyrolysis is generally regarded as waste. Here, we used Parthenium hysterophorus biomass as the antifungal source and obtained the aqueous phase after pyrolysis. Using GC-MS analysis of the aqueous phase collected from P. hysterophorus biomass revealed the presence of a large number of aromatic and organic compounds. Using virtual screening, the compounds present in the aqueous phase were docked against Trr1 using GLIDE. Two promising candidates were analyzed further by performing molecular dynamics simulation using GROMACS, to establish stable interactions. We validated the computational results with clustering analysis. We report that 2,4-Di-tertbutyl phenol and 1H-Pyrazole, 4-ethyl-3,5-dimethyl have a potent antifungal property and we postulate that they could be a potent antifungal agent against Trr1 of C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Antifúngicos/farmacologia , Cryptococcus neoformans/genética , Pirólise , Criptococose/microbiologia , Virulência , Testes de Sensibilidade Microbiana
5.
Carbohydr Polym ; 227: 115361, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590858

RESUMO

Chicken feather peptone (CFP) derived from poultry waste is a rich source of essential minerals and amino acids. This, along with suitable carbon source, can be used as a low cost complex supplemental nutrient source for microbial fermentation. In the present work, CFP blended with sucrose was evaluated for the production of levan using Bacillus subtilis MTCC 441. Amount of CFP added to the medium significantly influenced levan production and it was found that at a concentration 2 g/L, maximum levan yield of 0.26 ±â€¯0.04 g/g sucrose was obtained. The levan yield obtained with CFP as a low cost supplemental nutrient source was comparable with that obtained from commercial medium (0.31 ±â€¯0.02 g/g sucrose). Levan produced using CFP was tested on primary cell lines at various concentrations (100-1000 µM) and found to be non-toxic and bio-compatible in nature. This indicates that CFP could be used as low cost nutrient source for levan production.


Assuntos
Bacillus subtilis/metabolismo , Frutanos/metabolismo , Peptonas/metabolismo , Sacarose/metabolismo , Animais , Sobrevivência Celular , Galinhas , Plumas/química , Fermentação , Frutanos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos
6.
Heliyon ; 5(9): e02414, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31687543

RESUMO

Levan is a water soluble biopolymer widely used in food, pharma, personal care and aquaculture industries. In this work, levan was synthesized by Bacillus subtilis MTCC 441 using sucrose as a sole carbon source. Effects of pH, sucrose concentration, nitrogen source, nitrogen concentration, inoculum size and agitation speed on levan production were studied. Yeast extract (YE) was found to be the best nitrogen source. Sucrose concentration - 100 g/L, pH - 7, YE concentration - 2 g/L, inoculum size 10% (v/v) and RPM - 150 were found to be optimal values for levan production. Effects of precipitation pH (3-12), choice of solvent (ethanol, isopropanol, acetone, and methanol) and supernatant to solvent ratio (1:1 to 1:6) on levan yield were also studied. Isopropanol resulted in maximum levan recovery among the four solvents considered. Optimal pH and supernatant to solvent ratio for levan precipitation were found to be 11 and 1:5, respectively. Corresponding levan yield was 0.395 g/g of sucrose supplied. The product obtained was characterized using FTIR, 1H-NMR, 13C-NMR, and GPC. The cytotoxicity of the precipitated levan was studied on EA.hy926 cell line using MTT assay and the compound was proven to be non-toxic to the cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA