Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Poult Sci ; 103(7): 103826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761462

RESUMO

The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.


Assuntos
Ração Animal , Arginina , Galinhas , Clostridium perfringens , Coccidiose , Dieta , Suplementos Nutricionais , Enterite , Doenças das Aves Domésticas , Distribuição Aleatória , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Arginina/administração & dosagem , Arginina/farmacologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Enterite/veterinária , Enterite/imunologia , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Clostridium perfringens/fisiologia , Coccidiose/veterinária , Coccidiose/imunologia , Eimeria/fisiologia , Intestinos/efeitos dos fármacos , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Relação Dose-Resposta a Droga , Masculino , Imunidade Inata/efeitos dos fármacos
2.
Poult Sci ; 103(7): 103815, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713988

RESUMO

The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.


Assuntos
Ração Animal , Arginina , Galinhas , Coccidiose , Dieta , Suplementos Nutricionais , Enterite , Intestinos , Doenças das Aves Domésticas , Distribuição Aleatória , Animais , Arginina/administração & dosagem , Arginina/farmacologia , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Doenças das Aves Domésticas/imunologia , Suplementos Nutricionais/análise , Enterite/veterinária , Enterite/imunologia , Ração Animal/análise , Dieta/veterinária , Coccidiose/veterinária , Coccidiose/imunologia , Intestinos/efeitos dos fármacos , Eimeria/fisiologia , Clostridium perfringens/fisiologia , Masculino , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia
3.
Front Vet Sci ; 11: 1372961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803799

RESUMO

MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.

4.
Poult Sci ; 103(6): 103714, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636202

RESUMO

We investigated the effects of supplementing low protein diets with methionine (Met) or threonine (Thr) during a mixed Eimeria (consisting of E. acervulina, E. maxima and E. tenella) challenge in broilers. All birds were fed the same starter diet (d1-9) and finisher diet (d28-35) which met Cobb 500 nutrient specifications. Birds were allocated to 1 of 4 dietary treatments from d9 to 28: a standard protein diet (19% CP); a low protein diet (16% CP); or the low protein diet supplemented with Met or Thr at 50% above recommendations. On d14, half of the birds were challenged, and half of the birds were unchallenged. From d14 to 28, feed intake was recorded daily and BW every 3 or 4 d. Oocyst excretion was measured daily from d18 to 27. On d21 and 28, 3 birds per pen were euthanized to assess nutrient digestibility, cytokine expression and intestinal histology. During the acute stage of the challenge, challenged birds reduced ADFI and ADG (P < 0.05). In the pre-patent and recovery stages, birds given the 16% CP diets increased ADFI (P < 0.05), meanwhile there were no differences in ADG in these stages (P > 0.05). Nutrient digestibility was reduced in challenged birds in the acute stage (P < 0.05) but tended to be greater than in unchallenged birds during the recovery stage. There was no significant effect of diet on oocyst excretion or intestinal histology (P > 0.05). Interactions were observed between diet and challenge on IL-10 and IL-21 expression in the cecal tonsils during the acute stage of the challenge (P < 0.05), due to reduced IL-10 expression in challenged Thr birds and greater IL-21 expression in challenged Met birds. Supplementation with Thr or Met had limited effects on the outcomes of a mixed Eimeria challenge but provides benefits to the host by enhancing their immune response.


Assuntos
Ração Animal , Galinhas , Coccidiose , Dieta com Restrição de Proteínas , Suplementos Nutricionais , Eimeria , Metionina , Doenças das Aves Domésticas , Treonina , Animais , Metionina/administração & dosagem , Coccidiose/veterinária , Coccidiose/parasitologia , Eimeria/fisiologia , Ração Animal/análise , Treonina/administração & dosagem , Doenças das Aves Domésticas/parasitologia , Suplementos Nutricionais/análise , Dieta com Restrição de Proteínas/veterinária , Masculino , Dieta/veterinária , Distribuição Aleatória
5.
Animals (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338116

RESUMO

This study aimed to understand the effect of C. jejuni challenge on the cecal microbiota and short-chain fatty acid (SCFA) concentration to form a better understanding of the host-pathogen interaction. Sixty broilers were randomly allocated into two treatments: control and challenge. Each treatment was replicated in six pens with five birds per pen. On day 21, birds in the challenge group were orally gavaged with 1 × 108C. jejuni/mL, while the control group was mock challenged with PBS. The C. jejuni challenge had no effect on body weight, feed intake, and feed conversion ratio compared to the control group. On day 28, the C. jejuni challenge decreased the observed features and Shannon index compared to the control group. On the species level, the C. jejuni challenge decreased (p = 0.02) the relative abundance of Sellimonas intestinalis on day 28 and increased (p = 0.04) the relative abundance of Faecalibacterium sp002160895 on day 35 compared to the control group. The C. jejuni challenge did not change the microbial function and the cecal concentrations of SCFA on days 28 and 35 compared to the control group. In conclusion, C. jejuni might alter the gut microbiota's composition and diversity without significantly compromising broilers' growth.

6.
Virol J ; 20(1): 298, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102683

RESUMO

BACKGROUND: Avian influenza is a highly contagious, agriculturally relevant disease that can severely affect the poultry industry and food supply. Eurasian-origin H5Nx highly pathogenic avian influenza viruses (HPAIV) (clade 2.3.4.4) have been circulating globally in wild birds with spill over into commercial poultry operations. The negative impact to commercial poultry renewed interest in the development of vaccines against these viruses to control outbreaks in the U.S. METHODS: The efficacy of three recombinant H5 vaccines delivered in ovo or day of age were evaluated in commercial broilers challenged with the 2015 U.S. H5N2 clade 2.3.4.4c HPAIV. The recombinant vaccines included an alphavirus RNA particle vaccine (RP-H5), an inactivated reverse genetics-derived (RG-H5) and recombinant HVT vaccine (rHVT-AI) expressing H5 hemagglutinin (HA) genes. In the first experiment, in ovo vaccination with RP-H5 or rHVT-AI was tested against HPAI challenge at 3 or 6 weeks of age. In a second experiment, broilers were vaccinated at 1 day of age with a dose of either 107 or 108 RP-H5, or RG-H5 (512 HA units (HAU) per dose). RESULTS: In experiment one, the RP-H5 provided no protection following in ovo application, and shedding titers were similar to sham vaccinated birds. However, when the RP-H5 was delivered in ovo with a boost at 3 weeks, 95% protection was demonstrated at 6 weeks of age. The rHVT-AI vaccine demonstrated 95 and 100% protection at 3 and 6 weeks of age, respectively, of challenged broilers with reduced virus shedding compared to sham vaccinated birds. Finally, when the RP-H5 and rHVT vaccines were co-administered at one day of age, 95% protection was demonstrated with challenge at either 3 or 6 weeks age. In the second experiment, the highest protection (92%) was observed in the 108 RP-H5 vaccinated group. Significant reductions (p < 0.05) in virus shedding were observed in groups of vaccinated birds that were protected from challenge. The RG-H5 provided 62% protection from challenge. In all groups of surviving birds, antibody titers increased following challenge. CONCLUSIONS: Overall, these results demonstrated several strategies that could be considered to protected broiler chickens during a H5 HPAI challenge.


Assuntos
Vírus da Influenza A Subtipo H5N2 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Animais , Galinhas , Vírus da Influenza A Subtipo H5N2/genética , Vacinas Sintéticas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
7.
Microorganisms ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38004824

RESUMO

Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry. Contaminated poultry eggs and meat products are the major sources of human Salmonella infection. Horizontal and vertical transmission are the primary routes of infection in chickens. The principal virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being used to mitigate the Salmonella load in poultry. Despite the existence of various control measures, there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection from Salmonella in poultry flocks. This review examines the current knowledge on the etiology, transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of preventative approaches to Salmonella.

8.
Poult Sci ; 102(10): 102959, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619505

RESUMO

To evaluate the efficacy of synbiotic during a necrotic enteritis (NE) infection, a total of 360 day-old chicks were randomly assigned into 4 experimental groups in a 2 × 2 factorial setup: control, challenge, synbiotic (1 g/kg), and challenge + synbiotic, with 6 replicates. NE was induced by gavaging 1 × 104Eimeria maxima oocysts and 1 × 108 CFU/mL of Clostridium perfringens on d 14 (D14) and D19, 20, and 21, respectively. At D35, the NE challenge decreased the BW gain (P < 0.001) and increased feed conversion ratio (P = 0.03), whereas synbiotic supplementation decreased the feed intake (P = 0.04). At D21, NE challenge increased gut permeability (P < 0.001), decreased regulatory T cells (Tregs) in the cecal tonsil (CT) (P = 0.02), increased Tregs in the spleen (P = 0.02), decreased nitric oxide (NO) production in the spleen (P = 0.04) and decreased IL-10 expression in CT (P = 0.02), whereas synbiotic supplementation increased CD4+:CD8+ T cells in the spleen (P < 0.001) and decreased interferon (IFN)-γ expression in the jejunum (P = 0.07), however, synbiotic supplementation during NE challenge decreased mid-gut lesion score (P < 0.001), increased CD4+:CD8+ T cells in CT and decreased IgA production in bile (P < 0.001), compared to the control group. At D28, synbiotic supplementation decreased CD4+:CD8+ T cells in CT (P < 0.001), whereas synbiotic supplementation during NE challenge decreased Tregs in CT (P < 0.001) and increased NO production in the spleen (P = 0.04), compared to the control group. At D35, the NE challenge decreased CD4+:CD8+ T cells in the spleen (P = 0.03), decreased IgA production in bile (P = 0.02), decreased IL-10 expression in CT (P = 0.04), and decreased IL-10 (P = 0.009), IFN-γ (P = 0.03) and inducible nitric oxide synthase (P = 0.02) expression in the jejunum, whereas synbiotic supplementation increased Tregs in the spleen (P = 0.04), compared to control group. Synbiotic supplementation during the NE challenge decreased both IL-1ß (P = 0.02) and IFN-γ (P = 0.001) expression in CT, compared to the control group. It can be concluded that synbiotic supplementation increases production performance by decreasing mid-gut lesions and enhancing protective immunity against NE, and efficiency of synbiotic could be improved by blending additional probiotics and prebiotics.


Assuntos
Infecções por Clostridium , Coccidiose , Enterite , Doenças das Aves Domésticas , Simbióticos , Animais , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Galinhas , Interleucina-10 , Dieta , Enterite/veterinária , Clostridium perfringens , Imunoglobulina A , Ração Animal/análise , Coccidiose/prevenção & controle , Coccidiose/veterinária
9.
Poult Sci ; 102(7): 102773, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236037

RESUMO

We investigated the effects of supplementing arginine (Arg) and branched-chain amino acids (BCAA) in broilers fed reduced-protein diets and challenged with Eimeria spp. All birds were fed the same starter diet meeting Cobb 500 nutrient specifications from d 1 to 9. Four grower diets: positive control (PC) with 20.0% crude protein (CP); reduced-protein negative control (NC) with 17.5% CP; or NC supplemented with Arg or BCAA at 50% above recommendations (ARG or BCAA) were fed to the birds from d 9 to 28. Birds were allocated in a 2 × 4 factorial arrangement (4 diets, each with or without challenge), with 8 replicates per treatment. On d 14, the challenge groups were orally gavaged with mixed Eimeria spp. Intestinal permeability was higher (P < 0.05) in NC than PC, whereas the permeability of ARG and BCAA groups did not differ significantly from PC. On d 28, a significant interaction (P < 0.01) was observed in CD8+: CD4+ ratios in cecal tonsils (CT), Eimeria challenge increased the ratios in all groups except for the ARG group. On d 21, a significant interaction was found for CD4+CD25+ percentages in CT (P < 0.01) that Eimeria challenge increased the percentages only in PC and NC groups. On d 21 and 28, significant interactions (P < 0.01) were found for macrophage nitric oxide (NO) production. In nonchallenged birds, NO was higher in the ARG group than other groups, but in challenged birds, NO was higher in both ARG and BCAA groups. On d 21, a significant interaction was found for bile anticoccidial IgA concentrations (P < 0.05) that Eimeria challenge increased IgA only in NC and ARG groups. The results suggest that a reduced-protein diet exacerbates the impact of the Eimeria challenge on intestinal integrity, but this could be mitigated by Arg and BCAA supplementations. Arginine and BCAA supplementations in reduced-protein diets could be beneficial for broilers against Eimeria infection by enhancing the immune responses. The beneficial effects of Arg supplementation tended to be more pronounced compared to BCAA supplementation.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Eimeria/fisiologia , Galinhas , Arginina/farmacologia , Coccidiose/prevenção & controle , Coccidiose/veterinária , Dieta/veterinária , Suplementos Nutricionais , Dieta com Restrição de Proteínas/veterinária , Aminoácidos de Cadeia Ramificada/farmacologia , Imunidade , Imunoglobulina A , Ração Animal/análise , Doenças das Aves Domésticas/prevenção & controle
10.
Front Microbiol ; 14: 1106604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082176

RESUMO

Fusarium toxins are one of the most common contaminants in poultry diets. The co-occurrence of fumonisins (FUM) and deoxynivalenol (DON), even at a subclinical dose, negatively affects the growth performance, intestinal integrity and induce subclinical necrotic enteritis in broiler chickens. Loss of gut integrity can be expected to alter the intestinal microbiota's composition. The objective of this study was to identify the effects of combined FUM and DON on the cecal microbiome profile and predicted metabolic functions and a short chain fatty acid profile in broilers challenged with Clostridium perfringens. A total of 240 1 day-old chicks were randomly assigned to two treatments: a control diet and the control diet with 3 mg/kg FUM + 4 mg/kg DON each with eight replications. All the birds were received cocci vaccine at d0. All birds in both treatment groups were challenged with C. perfringens 1 × 108 CFU via feed on d 19 and 20 to achieve 5% mortality. On d 35, the FUM and DON contaminated diet numerically (P = 0.06) decreased the body weight gain (BWG) by 84 g compared to the control group. The bacterial compositions of the cecal contents were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. Overall, microbial richness and diversity increased (P < 0.02) during the studied period (d 21-35). Cecal contents of birds in the FUM + DON group had greater (P < 0.05) microbial evenness and diversity (Shannon index) compared to the control group. FUM + DON exposure decreased (P = 0.001) the relative abundance of Proteobacteria in the cecal content, compared to the control group. The combined FUM + DON significantly increased the relative abundance of the Defluviitaleaceae and Lachnospiraceae families (P < 0.05) but decreased the abundances of the Moraxellaceae and Streptococcaceae (P < 0.05) compared to the control group birds. At the genus level, FUM + DON exposure decreased (P < 0.05) Acinetobacter and Pseudomonas abundance and had a tendency (P = 0.08) to decrease Thermincola abundance compared to the control group. In the ileum, no NE-specific microscopic abnormalities were found; however, the tip of the ileal villi were compromised. The present findings showed that dietary FUM and DON contamination, even at subclinical levels, altered cecal microbial composition, dysregulated intestinal functions, and impaired the gut immune response, potentially predisposing the birds to necrotic enteritis.

11.
Front Physiol ; 14: 1326809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235383

RESUMO

Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.

12.
Microorganisms ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363726

RESUMO

C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.

13.
Microorganisms ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296234

RESUMO

Clostridium perfringens type A and C are the primary etiological agents associated with necrotic enteritis (NE) in poultry. The predisposing factors implicated in the incidence of NE changes the physical properties of the gut, immunological status of birds, and disrupt the gut microbial homeostasis, causing an over-proliferation of C. perfringens. The principal virulence factors contributing to the pathogenesis of NE are the α-toxin, ß-toxin, and NetB toxin. The immune response to NE in poultry is mediated by the Th1 pathway or cytotoxic T-lymphocytes. C. perfringens type A and C are also pathogenic in humans, and hence are of public health significance. C. perfringens intoxications are the third most common bacterial foodborne disease after Salmonella and Campylobacter. The restrictions on the use of antibiotics led to an increased incidence of NE in poultry. Hence, it is essential to develop alternative strategies to keep the prevalence of NE under check. The control strategies rely principally on the positive modulation of host immune response, nutritional manipulation, and pathogen reduction. Current knowledge on the etiology, pathogenesis, predisposing factors, immune response, effect on the gut microbial homeostasis, and preventative strategies of NE in this post-antibiotic era is addressed in this review.

14.
Foods ; 11(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626971

RESUMO

The gut of warm-blooded animals is colonized by microbes possibly constituting at least 100 times more genetic material of microbial cells than that of the somatic cells of the host. These microbes have a profound effect on several physiological functions ranging from energy metabolism to the immune response of the host, particularly those associated with the gut immune system. The gut of a newly hatched chick is typically sterile but is rapidly colonized by microbes in the environment, undergoing cycles of development. Several factors such as diet, region of the gastrointestinal tract, housing, environment, and genetics can influence the microbial composition of an individual bird and can confer a distinctive microbiome signature to the individual bird. The microbial composition can be modified by the supplementation of probiotics, prebiotics, or synbiotics. Supplementing these additives can prevent dysbiosis caused by stress factors such as infection, heat stress, and toxins that cause dysbiosis. The mechanism of action and beneficial effects of probiotics vary depending on the strains used. However, it is difficult to establish a relationship between the gut microbiome and host health and productivity due to high variability between flocks due to environmental, nutritional, and host factors. This review compiles information on the gut microbiota, dysbiosis, and additives such as probiotics, postbiotics, prebiotics, and synbiotics, which are capable of modifying gut microbiota and elaborates on the interaction of these additives with chicken gut commensals, immune system, and their consequent effects on health and productivity. Factors to be considered and the unexplored potential of genetic engineering of poultry probiotics in addressing public health concerns and zoonosis associated with the poultry industry are discussed.

15.
Front Physiol ; 13: 820349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356075

RESUMO

Two experiments were conducted to investigate the effects of induced moisture loss on embryonic development and the immune response following an inflammatory challenge immediately post-hatch. In Experiment I, fertile leghorn eggs (n = 100) and commercial broiler eggs (n = 300) were set at 37.5°C and moisture loss was induced in one-half of the Leghorn and broiler eggs by drilling two, 1.5 mm diameter holes. The Control eggs had 0 holes. At embryonic day (ED)18, layer and broiler eggs in the 2-holes treatment had a significant (P < 0.01) increase in moisture loss compared to the control treatment (10.1% vs. 8.2%). Similarly, at ED18, the broiler eggs with 2-holes had a significant increase (P < 0.01) in moisture loss compared with control eggs (9.9% vs. 8.4%). Thymocytes from both the leghorn (104%) and broiler (62%) embryos in the 2-holes treatment had significantly increased in vitro proliferation compared with the control embryos (P ≤ 0.05). At ED18, layer and broiler embryos in the 2-holes treatment had an approximate twofold increase in the splenic CD8+/CD4+ ratio (P ≤ 0.05) and CD4+CD25+ cells percentage in both the thymus and spleen (P ≤ 0.05). At ED18, both layer and broiler embryos from the 2-holes treatment had a significant increase in splenic IL1-ß, IL-6, IL-10, and TLR-4 mRNA transcription compared to the control group (P ≤ 0.05). Experiment II was repeated with 300 fertile broiler eggs. On the day of hatch, chicks were randomly distributed into one of four treatments in a 2 (0, 2 holes) × 2 (0, 500 µg lipopolysaccharide, LPS) factorial arrangement of treatments. Chicks in the LPS groups were injected intraperitoneally with 500 µg/kg BW LPS. At 24 and 48 h post-hatch, chicks hatched from eggs with 2-holes and challenged with LPS had a significant increase (P ≤ 0.05) in thymocyte proliferation at 24 h (42%) and 48 h (37%) when compared with chicks hatched from the control (0-hole; 0 µg LPS) treatment. Chicks hatched from the 2-holes treatment and challenged with the LPS had an approximately twofold higher splenic CD8+/CD4+ ratio and 1.5 fold increase in CD4+CD25+ percentage compared to control chicks (P ≤ 0.05). In chicks hatched from the 2-holes treatment, MUC2 mRNA transcription was comparable to control chicks at 24 and 48 h in response to the LPS challenge. Our data suggest that the 2-holes treatment reprograms gene transcription to facilitate cell survival via proliferation and differentiation during an LPS inflammatory challenge.

16.
PLoS One ; 16(11): e0260280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843525

RESUMO

Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 µg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1ß, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.


Assuntos
Proteínas Aviárias/imunologia , Antígenos CD4/imunologia , Galinhas/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/imunologia , Salmonella enteritidis/imunologia , Animais , Galinhas/microbiologia , Interações Hospedeiro-Patógeno , Imunidade , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia
17.
PLoS One ; 16(11): e0259334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784366

RESUMO

Salmonella control strategies include vaccines that help reduce the spread of Salmonella in poultry flocks. In this study we evaluated the efficacy of administering a live Salmonella vaccine followed by a killed Salmonella chitosan nanoparticle (CNP) vaccine booster on the cellular and humoral immunity of broilers. The CNP vaccine was synthesized with Salmonella Enteritidis (S. Enteritidis) outer-membrane-proteins (OMPs) and flagellin-proteins. At d1-of-age, one-hundred-sixty-eight chicks were allocated into treatments: 1) No vaccine, 2) Live vaccine (Poulvac®ST), 3) CNP vaccine, 4) Live+CNP vaccine. At d1-of-age, birds were orally vaccinated with PBS, Live vaccine, or CNP. At d7-of-age, the No vaccine, Live vaccine and CNP vaccine groups were boosted with PBS and the Live+CNP vaccine group was boosted with CNP. At d14-of-age, birds were challenged with 1×109 CFU/bird S. Enteritidis. There were no significant differences in body-weight-gain (BWG) or feed-conversion-ratio (FCR). At 8h-post-challenge, CNP and Live+CNP-vaccinated birds had 17% and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d28-of-age, CNP, Live, and Live+CNP-vaccinated birds had 33%, 18%, and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d14-of-age, Live+CNP-vaccinated birds had 46% greater levels (P<0.05) of anti-Salmonella OMPs IgY in serum, compared to control. At d21-of-age, splenocytes from CNP and Live-vaccinated birds had increased (P<0.05) T-lymphocyte proliferation at 0.02 mg/mL OMPs stimulation compared to the control. At d28-of-age, CNP and Live+CNP-vaccinated birds had 0.9 Log10 CFU/g and 1 Log10 CFU/g decreased S. Enteritidis cecal loads (P<0.05), respectively, compared to control. The CNP vaccine does not have adverse effects on bird's BWG and FCR or IL-1ß, IL-10, IFN-γ, or iNOS mRNA expression levels. It can be concluded that the CNP vaccine, as a first dose or as a booster vaccination, is an alternative vaccine candidate against S. Enteritidis in broilers.


Assuntos
Vacinas contra Salmonella , Animais , Galinhas , Quitosana , Vacinas Atenuadas
18.
Vaccines (Basel) ; 9(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579278

RESUMO

This work discusses the present-day limitations of current commercial Salmonella vaccines for broilers and layers and explores a novel approach towards poultry vaccination using biodegradable nanoparticle vaccines against Salmonella. With the increasing global population and poultry production and consumption, Salmonella is a potential health risk for humans. The oral administration of killed or inactivated vaccines would provide a better alternative to the currently commercially available Salmonella vaccines for poultry. However, there are currently no commercial oral killed-vaccines against Salmonella for use in broilers or layers. There is a need for novel and effective interventions in the poultry industry. Polymeric nanoparticles could give way to an effective mass-administered mucosal vaccination method for Salmonella. The scope of this work is limited to polymeric nanoparticles against Salmonella for use in broilers and layers. This review is based on the information available at the time of the investigation.

19.
PLoS One ; 16(3): e0247080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720955

RESUMO

Campylobacter is one of the major foodborne pathogens causing bacterial gastroenteritis worldwide. The immune response of broiler chickens to C. jejuni is under-researched. This study aimed to characterize the immune response of chickens to Campylobacter jejuni colonization. Birds were challenged orally with 0.5 mL of 2.4 x 108 CFU/mL of Campylobacter jejuni or with 0.5 mL of 0.85% saline. Campylobacter jejuni persisted in the ceca of challenged birds with cecal colonization reaching 4.9 log10 CFU/g on 21 dpi. Campylobacter was disseminated to the spleen and liver on 7 dpi and was cleared on 21 dpi from both internal organs. Challenged birds had a significant increase in anti-Campylobacter serum IgY (14&21 dpi) and bile IgA (14 dpi). At 3 dpi, there was a significant suppression in T-lymphocytes derived from the cecal tonsils of birds in the challenge treatment when compared to the control treatment after 72 h of ex vivo stimulation with Con A or C. jejuni. The T-cell suppression on 3 dpi was accompanied by a significant decrease in LITAF, K60, CLAU-2, IL-1ß, iNOS, and IL-6 mRNA levels in the ceca and an increase in nitric oxide production from adherent splenocytes of challenged birds. In addition, on 3 dpi, there was a significant increase in CD4+ and CD8+ T lymphocytes in the challenge treatment. On 14 dpi, both pro and anti-inflammatory cytokines were upregulated in the spleen, and a significant increase in CD8+ T lymphocytes in Campylobacter-challenged birds' ceca was observed. The persistence of C. jejuni in the ceca of challenged birds on 21 dpi was accompanied by an increase in IL-10 and LITAF mRNA levels, an increase in MNC proliferation when stimulated ex-vivo with the diluted C. jejuni, an increase in serum specific IgY antibodies, an increase in both CD4+ and CD8+ cells, and a decrease in CD4+:CD8+ cell ratio. The balanced Th1 and Th2 immune responses against C. jejuni might explain the ceca's bacterial colonization and the absence of pathology in Campylobacter-challenged birds. Future studies on T lymphocyte subpopulations should elucidate a pivotal role in the persistence of Campylobacter in the ceca.


Assuntos
Campylobacter jejuni/fisiologia , Galinhas/imunologia , Galinhas/microbiologia , Animais , Campylobacter jejuni/imunologia , Ceco/microbiologia , Galinhas/metabolismo , Citocinas/metabolismo
20.
Vet Immunol Immunopathol ; 224: 110059, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32408182

RESUMO

There are currently no licensed vaccines against Clostridium perfringens which causes necrotic enteritis in poultry. Chitosan nanoparticles were formulated with native (CN) or toxoids (CT) of extracellular proteins (ECP) of C. perfringens, both surface-tagged with Salmonella flagellar proteins. In a pH stability assay, CN and CT nanoparticles released 6% and 0% of their protein at 8.0 pH. In a protein release assay, CN and CT nanoparticles released 16% and 10% of their protein respectively at 7.4 pH after 24 h. CN and CT nanoparticles incubated at 100 µg/mL PBS with Chicken RBCs released 1% and 0% hemoglobin respectively. Ninety broilers were randomly assigned to treatments; sham-vaccinated (Control), CN-vaccinated (CN), and CT-vaccinated (CT). Each bird was orally gavaged with 50 µg vaccine in 0.5 mL PBS or 0.5 mL PBS only on d 0, 3, 7 and 14 of age. At 21 d of age, the CN group had higher anti-ECP IgA than control (P < 0.05). At 21 d of age, the CN and CT group had higher anti-ECP IgA than control (P < 0.05). At 17 d of age, the CN group had higher anti-flagellar IgG than control (P < 0.05). At 10 d of age, the CN group had higher anti-flagellar IgA than control (P < 0.05). Splenic T cells from chickens in the CN and CT group ex-vivo stimulated with 0.05 mg/mL ECP, had higher proliferation control (P < 0.05, P < 0.01 respectively). Splenic T cells from chickens in the CN and CT groups ex-vivo stimulated with 0.1 mg/mL ECP had proliferation than control (P < 0.05). Pooled serum from 17 d of age CN and CT-vaccinated birds partially neutralized toxins in 50 µg of ECP (P < 0.05). Pooled serum from 28 d of age CN-vaccinated birds also partially neutralized toxins in 50 µg of ECP. The result from this study indicates the potential for chitosan loaded with Clostridium perfringens extracellular proteins to be applied to necrotic enteritis challenge studies.


Assuntos
Vacinas Bacterianas/imunologia , Quitosana/química , Infecções por Clostridium/veterinária , Enterocolite Necrosante/veterinária , Nanopartículas/química , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Galinhas/imunologia , Galinhas/microbiologia , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/prevenção & controle , Flagelos/imunologia , Imunogenicidade da Vacina , Imunoglobulina A/análise , Imunoglobulina G/sangue , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Salmonella , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA