Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS One ; 18(4): e0283776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37014920

RESUMO

The intracellular human malaria parasite, Plasmodium falciparum, uses the PfATP4 cation pump to maintain Na+ and H+ homeostasis in parasite cytosol. PfATP4 is the target of advanced antimalarial leads, which produce many poorly understood metabolic disturbances within infected erythrocytes. Here, we expressed the mammalian ligand-gated TRPV1 ion channel at the parasite plasma membrane to study ion regulation and examine the effects of cation leak. TRPV1 expression was well-tolerated, consistent with negligible ion flux through the nonactivated channel. TRPV1 ligands produced rapid parasite death in the transfectant line at their activating concentrations, but were harmless to the wild-type parent. Activation triggered cholesterol redistribution at the parasite plasma membrane, reproducing effects of PfATP4 inhibitors and directly implicating cation dysregulation in this process. In contrast to predictions, TRPV1 activation in low Na+ media accentuated parasite killing but a PfATP4 inhibitor had unchanged efficacy. Selection of a ligand-resistant mutant revealed a previously uncharacterized G683V mutation in TRPV1 that occludes the lower channel gate, implicating reduced permeability as a mechanism for parasite resistance to antimalarials targeting ion homeostasis. Our findings provide key insights into malaria parasite ion regulation and will guide mechanism-of-action studies for advanced antimalarial leads that act at the host-pathogen interface.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Animais , Humanos , Antimaláricos/uso terapêutico , Ligantes , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Cátions/metabolismo , Membrana Celular/metabolismo , Malária/metabolismo , Eritrócitos/metabolismo , Mamíferos/metabolismo
2.
Genomics Proteomics Bioinformatics ; 20(5): 899-911, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931322

RESUMO

Explainable artificial intelligence aims to interpret how machine learning models make decisions, and many model explainers have been developed in the computer vision field. However, understanding of the applicability of these model explainers to biological data is still lacking. In this study, we comprehensively evaluated multiple explainers by interpreting pre-trained models for predicting tissue types from transcriptomic data and by identifying the top contributing genes from each sample with the greatest impacts on model prediction. To improve the reproducibility and interpretability of results generated by model explainers, we proposed a series of optimization strategies for each explainer on two different model architectures of multilayer perceptron (MLP) and convolutional neural network (CNN). We observed three groups of explainer and model architecture combinations with high reproducibility. Group II, which contains three model explainers on aggregated MLP models, identified top contributing genes in different tissues that exhibited tissue-specific manifestation and were potential cancer biomarkers. In summary, our work provides novel insights and guidance for exploring biological mechanisms using explainable machine learning models.


Assuntos
Inteligência Artificial , Transcriptoma , Reprodutibilidade dos Testes , Aprendizado de Máquina , Redes Neurais de Computação
3.
Mol Pharmacol ; 102(3): 172-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798366

RESUMO

Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Animais , Ânions/química , Ânions/metabolismo , Antimaláricos/farmacologia , Eritrócitos/metabolismo , Humanos , Nutrientes , Plasmodium falciparum/metabolismo
4.
J Am Chem Soc ; 144(30): 13815-13822, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35868012

RESUMO

In proteins, the amino acids Phe, Tyr, and especially Trp are frequently involved in π interactions such as π-π, cation-π, and CH-π bonds. These interactions are often crucial for protein structure and protein-ligand binding. A powerful means to study these interactions is progressive fluorination of these aromatic residues to modulate the electrostatic component of the interaction. However, to date no protein expression platform is available to produce milligram amounts of proteins labeled with such fluorinated amino acids. Here, we present a Lactococcus lactis Trp auxotroph-based expression system for efficient incorporation (≥95%) of mono-, di-, tri-, and tetrafluorinated, as well as a methylated Trp analog. As a model protein we have chosen LmrR, a dimeric multidrug transcriptional repressor protein from L. lactis. LmrR binds aromatic drugs, like daunomycin and riboflavin, between Trp96 and Trp96' in the dimer interface. Progressive fluorination of Trp96 decreased the affinity for the drugs 6- to 70-fold, clearly establishing the importance of electrostatic π-π interactions for drug binding. Presteady state kinetic data of the LmrR-drug interaction support the enthalpic nature of the interaction, while high resolution crystal structures of the labeled protein-drug complexes provide for the first time a structural view of the progressive fluorination approach. The L. lactis expression system was also used to study the role of Trp68 in the binding of riboflavin by the membrane-bound riboflavin transport protein RibU from L. lactis. Progressive fluorination of Trp68 revealed a strong electrostatic component that contributed 15-20% to the total riboflavin-RibU binding energy.


Assuntos
Lactococcus lactis , Triptofano , Aminoácidos/metabolismo , Cátions , Proteínas de Membrana Transportadoras/metabolismo , Riboflavina/metabolismo , Triptofano/química
6.
mBio ; 13(3): e0040422, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420481

RESUMO

Intracellular malaria parasites export many proteins into their host cell, inserting several into the erythrocyte plasma membrane to enable interactions with their external environment. While static techniques have identified some surface-exposed proteins, other candidates have eluded definitive localization and membrane topology determination. Moreover, both export kinetics and the mechanisms of membrane insertion remain largely unexplored. We introduce Reporter of Insertion and Surface Exposure (RISE), a method for continuous nondestructive tracking of antigen exposure on infected cells. RISE utilizes a small 11-amino acid (aa) HiBit fragment of NanoLuc inserted into a target protein and detects surface exposure through high-affinity complementation to produce luminescence. We tracked the export and surface exposure of CLAG3, a parasite protein linked to nutrient uptake, throughout the Plasmodium falciparum cycle in human erythrocytes. Our approach revealed key determinants of trafficking and surface exposure. Removal of a C-terminal transmembrane domain aborted export. Unexpectedly, certain increases in the exposed reporter size improved the luminescence signal, but other changes abolished the surface signal, revealing that both size and charge of the extracellular epitope influence membrane insertion. Marked cell-to-cell variation with larger inserts containing multiple HiBit epitopes suggests complex regulation of CLAG3 insertion at the host membrane. Quantitative, continuous tracking of CLAG3 surface exposure thus reveals multiple factors that determine this protein's trafficking and insertion at the host erythrocyte membrane. The RISE assay will enable study of surface antigens from divergent intracellular pathogens. IMPORTANCE Malaria parasites invade and replicate within red blood cells of their human or animal hosts to avoid immune detection. At the same time, these parasites insert their own proteins into the host membrane to scavenge plasma nutrients, facilitate immune evasion, and perform other essential activities. As there is broad interest in developing vaccines and antimalarial therapies against these surface-exposed antigens, robust methods are needed to examine how and when parasite proteins insert at the host membrane. We therefore developed and used Reporter of Insertion and Surface Exposure (RISE) to track parasite antigen exposure. Using RISE, we followed the time course of membrane insertion for CLAG3, a conserved protein linked to a nutrient uptake channel on infected erythrocytes. We found that CLAG3 insertion occurs at specific parasite stages and that this insertion is required for the formation of the nutrient uptake channel. We also varied the size and charge of the extracellular domain to define constraints on protein insertion at the host membrane. Single-cell imaging revealed that some cells continued to export CLAG3 even with large extracellular loops, suggesting sophisticated strategies used by malaria parasites to control their interactions with host plasma.


Assuntos
Malária , Parasitos , Animais , Antígenos de Protozoários , Eritrócitos/parasitologia , Luciferases , Malária/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Drug Des Devel Ther ; 15: 1509-1519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888977

RESUMO

BACKGROUND: Increasing evidences have revealed that solasodine, isolated from Solanum sisymbriifolium fruits, has multiple functions such as anti-oxidant, anti-tumor and anti-infection. However, its role in pancreatic cancer has not been well studied. METHODS: To explore the role of solasodine in pancreatic cancer, human pancreatic cell lines including SW1990 and PANC1 were treated with different concentrations of solasodine for 48 h, and cell viability was evaluated by MTT assay, cell invasion and migration were evaluated by Transwell assay. The effect of solasodine on the apoptosis of SW1990 and PANC1 cells was detected by flow cytometry. To further explore the antitumor effect of solasodine in vivo, an SW1990 tumor-bearing mouse model was constructed. The effects of solasodine on cytokines in the serum of SW1990 tumor-bearing mice were also evaluated by ELISA assay. RESULTS: Specifically, in vitro, solasodine could significantly inhibit the proliferation of pancreatic cancer cell lines SW1990 and PANC1 cells. Flow cytometric analysis indicated that solasodine could induce apoptosis of SW1990 and PANC1 cells. Western blot assay indicated that solasodine could significantly inhibit the activation of Cox-2/Akt/GSK3ß signal pathway. Meanwhile, the release of Cytochrome c from mitochondria to cytoplasm which can raise the caspases cascade (C-caspase 3 and C-caspase 9) was significantly enhanced by solasodine. In vivo, the results showed that solasodine had potent anti-tumor activities with a lower cytotoxicity. In addition, the serum TNF-α, IL-2 and IFN-γ levels in SW1990 tumor-bearing mice after the treatment of solasodine was significantly increased. CONCLUSION: Taken together, our results suggested that the solasodine could prevent the progression of pancreatic cancer by inhibiting proliferation and promoting apoptosis, as well as stimulating immunity, suggesting that solasodine might be a potential therapeutic strategy for pancreatic cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Frutas/química , Neoplasias Pancreáticas/tratamento farmacológico , Alcaloides de Solanáceas/farmacologia , Solanum/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/isolamento & purificação , Células Tumorais Cultivadas
8.
Elife ; 102021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393463

RESUMO

Malaria parasites use the RhopH complex for erythrocyte invasion and channel-mediated nutrient uptake. As the member proteins are unique to Plasmodium spp., how they interact and traffic through subcellular sites to serve these essential functions is unknown. We show that RhopH is synthesized as a soluble complex of CLAG3, RhopH2, and RhopH3 with 1:1:1 stoichiometry. After transfer to a new host cell, the complex crosses a vacuolar membrane surrounding the intracellular parasite and becomes integral to the erythrocyte membrane through a PTEX translocon-dependent process. We present a 2.9 Å single-particle cryo-electron microscopy structure of the trafficking complex, revealing that CLAG3 interacts with the other subunits over large surface areas. This soluble complex is tightly assembled with extensive disulfide bonding and predicted transmembrane helices shielded. We propose a large protein complex stabilized for trafficking but poised for host membrane insertion through large-scale rearrangements, paralleling smaller two-state pore-forming proteins in other organisms.


Malaria is an infectious disease caused by the family of Plasmodium parasites, which pass between mosquitoes and animals to complete their life cycle. With one bite, mosquitoes can deposit up to one hundred malaria parasites into the human skin, from where they enter the bloodstream. After increasing their numbers in liver cells, the parasites hijack, invade and remodel red blood cells to create a safe space to grow and mature. This includes inserting holes in the membrane of red blood cells to take up nutrients from the bloodstream. A complex of three tightly bound RhopH proteins plays an important role in these processes. These proteins are unique to malaria parasites, and so far, it has been unclear how they collaborate to perform these specialist roles. Here, Schureck et al. have purified the RhopH complex from Plasmodium-infected human blood to determine its structure and reveal how it moves within an infected red blood cell. Using cryo-electron microscopy to visualise the assembly in fine detail, Schureck et al. showed that the three proteins bind tightly to each other over large areas using multiple anchor points. As the three proteins are produced, they assemble into a complex that remains dissolved and free of parasite membranes until the proteins have been delivered to their target red blood cells. Some hours after delivery, specific sections of the RhopH complex are inserted into the red blood cell membrane to produce pores that allow them to take up nutrients and to grow. The study of Schureck et al. provides important new insights into how the RhopH complex serves multiple roles during Plasmodium infection of human red blood cells. The findings provide a framework for the development of effective antimalarial treatments that target RhopH proteins to block red blood cell invasion and nutrient uptake.


Assuntos
Eritrócitos/parasitologia , Genes de Protozoários/fisiologia , Plasmodium falciparum/fisiologia , Família Multigênica/fisiologia , Nutrientes/metabolismo , Plasmodium falciparum/genética
9.
J Mol Microbiol Biotechnol ; 26(4): 269-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27172771

RESUMO

Chemically defined media for growth of Lactococcus lactis strains contain about 50 components, making them laborious and expensive growth media. However, they are crucial for metabolism studies as well as for expression of heterologous proteins labeled with unnatural amino acids. In particular, the L. lactis Trp auxotroph PA1002, overexpressing the tryptophanyl tRNA synthetase enzyme of L. lactis, is very suitable for the biosynthetic incorporation of Trp analogs in proteins because of its most relaxed substrate specificity reported towards Trp analogs. Here we present two much simpler defined media for L. lactis, which consist of only 24 or 31 components, respectively, and with which the L. lactis Trp auxotroph shows similar growth characteristics as with a 50-component chemically defined medium. Importantly, the expression levels of two recombinant proteins used for evaluation were up to 2-3 times higher in these new media than in the 50-component medium, without affecting the Trp analog incorporation efficiency. Taken together, the simplest chemically defined media reported so far for L. lactis are presented. Since L. lactis also shows auxotrophy for Arg, His, Ile, Leu Val, and Met, our simplified media may also be useful for the biosynthetic incorporation of analogs of these five amino acids.


Assuntos
Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Coloração e Rotulagem/métodos , Triptofano/metabolismo , Proteínas de Bactérias/genética , Lactococcus lactis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Amino Acids ; 48(5): 1309-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872656

RESUMO

Lantibiotics are posttranslationally modified peptides with efficient inhibitory activity against various Gram-positive bacteria. In addition to the original modifications, incorporation of non-canonical amino acids can render new properties and functions to lantibiotics. Nisin is the most studied lantibiotic and contains no tryptophan residues. In this study, a system was constructed to incorporate tryptophan analogues into nisin, which included the modification machinery (NisBTC) and the overexpression of tryptophanyl-tRNA synthetase (TrpRS). Tryptophan and three different tryptophan analogues (5-fluoroTrp (5FW), 5-hydroxyTrp (5HW) and 5-methylTrp (5MeW)) were successfully incorporated at four different positions of nisin (I1W, I4W, M17W and V32W). The incorporation efficiency of tryptophan analogues into mutants I1W, M17W and V32W was over 97 %, while the mutant I4W showed relatively low incorporation efficiency (69-93 %). The variants with 5FW showed relatively higher production yield, while 5MeW-containing variants showed the lowest yield. The dehydration efficiency of serines or threonines was affected by the tryptophan mutants of I4W and V32W. The affinity of the peptides for the cation-ion exchange and reverse phase chromatography columns was significantly reduced when 5HW was incorporated. The antimicrobial activity of IIW and its 5FW analogue both decreased two times compared to that of nisin, while that of its 5HW analogue decreased four times. The 5FW analogue of I4W also showed two times decreased activity than nisin. However, the mutant M17W and its 5HW analogue both showed 32 times reduced activity relative to that of nisin.


Assuntos
Bacteriocinas/química , Nisina/química , Nisina/farmacologia , Triptofano/farmacologia , Bacteriocinas/genética , Bacteriocinas/farmacologia , Lactococcus lactis/efeitos dos fármacos , Estrutura Molecular , Nisina/genética , Triptofano/análogos & derivados , Triptofano/genética
11.
Amino Acids ; 47(1): 213-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399056

RESUMO

Biosynthetic incorporation of ß-(1-azulenyl)-L-alanine, an isostere of tryptophan, is reported using a tryptophan auxotroph expression host. The azulene moiety introduced this way in proteins features many attractive spectroscopic properties, particularly suitable for in vivo studies.


Assuntos
Alanina/metabolismo , Azulenos/metabolismo , Proteínas de Bactérias/biossíntese , Lactococcus lactis/metabolismo , Biossíntese de Proteínas , Proteínas de Bactérias/genética , Lactococcus lactis/genética , Triptofano/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 36(22): 3079-82, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22375382

RESUMO

OBJECTIVE: To provide theoretical basis for artificial cross breeding of Angelica dahurica from Sichuan and Hebei Province, the characteristics of stigma receptivity and the viability and life-span of pollen were studied. METHOD: The viability and life-span of pollen were evaluated by TTC (2, 3, 5-triphenyl tetrazlium chloride) test, and the stigma receptivity was estimated by benzidine-H2O2 method. RESULT: The pollen viability of A. dahurica from Sichuan and Hebei provinces was increased gradually since the bud stage, but those levels had since subsided after the pollen release from craze antheral. There was a little difference in the pollen viability of A. dahurica from Sichuan at different branches. While the order of the pollen viability of A. dahurica from Hebei was main stem < first-order branching < second-order branching. At room temperature, the pollen viability of both decreased during time of anthers dehiscing but also above 50% after 5 days. Compared with 4 degrees C and room temperature, conservation at - 20 degrees C could extend life of the pollen. The stigma had receptivity in 4th day and reached the highest level in the 6th day after blooming. CONCLUSION: The optimum artificial pollination times of A. dahurica was 6 days after blooming and choose the pollen in the peak stage of anthers dehiscing.


Assuntos
Angelica/fisiologia , Flores/fisiologia , Pólen/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA