Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(29): 9017-9026, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007530

RESUMO

The development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANPMTO/ALCD) and a deformable nanoadjuvant (PPER848). The ANPMTO/ALCD composite consisted of ß-cyclodextrin-decorated alginate (Alg-g-CD) and MTO-encapsulated adamantane-decorated nanoparticles (ANPMTO) through supramolecular interaction, facilitating the long-term and sustained production of plenary autologous antigens, particularly under a 660 nm laser. Simultaneously, the produced autologous antigens were effectively captured by nanoadjuvant PPER848 and subsequently transported to lymph nodes and DC cells, benefiting from its optimized size and deformability. This in situ tumor vaccine can trigger a robust antitumor immune response and demonstrate significant therapeutic efficacy in inhibiting tumor growth, suppressing tumor metastasis, and preventing postoperative recurrence, offering a straightforward approach to programming in situ tumor vaccines.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Imunoterapia , Nanopartículas , Vacinas Anticâncer/química , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Animais , Camundongos , Imunoterapia/métodos , Nanopartículas/química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Hidrogéis/química , Humanos , Linhagem Celular Tumoral , Células Dendríticas/imunologia , beta-Ciclodextrinas/química , Neoplasias/terapia , Neoplasias/imunologia , Alginatos/química , Adamantano/química , Adamantano/uso terapêutico
2.
Int J Biol Macromol ; 239: 124361, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028629

RESUMO

Soluble soybean polysaccharide (SSPS)-based composite films with the addition of nano zinc oxide (nZnO, 5 wt% based on SSPS) and tea tree essential oil (TTEO, 10 wt% based on SSPS) were developed by the casting method. The effect of the combination of nZnO and TTEO on the microstructure and physical, mechanical and functional properties of SSPS films was evaluated. The results showed that the SSPS/TTEO/nZnO film exhibited enhanced water vapor barrier properties, thermal stability, water resistance, surface wettability, and total color difference, and almost completely prevented ultraviolet light transmission. The addition of TTEO and nZnO had no significant effect on the tensile strength and elongation at break of the films, but decreased the percentage of light transmittance of the films at 600 nm from 85.5 % to 10.1 %. The DPPH radical scavenging activity of the films significantly increased from 46.8 % (SSPS) to 67.7 % (SSPS/TTEO/nZnO) due to the presence of TTEO. Scanning electron microscopy analysis indicated that nZnO and TTEO were evenly dispersed in the SSPS matrix. The synergistic effect of nZnO and TTEO endowed the SSPS film with excellent antibacterial activity against E. coli and S. aureus, suggesting that the SSPS/TTEO/nZnO film could be a promising material for active packaging applications.


Assuntos
Óleo de Melaleuca , Óxido de Zinco , Óleo de Melaleuca/farmacologia , Glycine max/química , Árvores , Embalagem de Alimentos/métodos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Escherichia coli , Staphylococcus aureus , Polissacarídeos/farmacologia , Polissacarídeos/química , Chá
3.
Ultrason Sonochem ; 73: 105472, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33524726

RESUMO

The formation of the coarse columnar crystal structure of Ti-6Al-4V alloy in the process of additive manufacturing greatly reduces the mechanical performance of the additive manufactured parts, which hinders the applications of additive manufacturing techniques in the engineering fields. In order to refine the microstructure of the materials using the high intensity ultrasonic via the acoustic cavitation and acoustic flow effect in the process of metal solidification, an ultrasonic vibration technique was developed to a synchronous couple in the process of Laser and Wire Additive Manufacturing (LWAM) in this work. It is found that the introduction of high-intensity ultrasound effectively interrupts the epitaxial growth tendency of prior-ß crystal and weakens the texture strength of prior-ß crystal. The microstructure of Ti-6Al-4V alloy converts to fine columnar crystals from typical coarse columnar crystals. The simulation results confirm that the acoustic cavitation effect applied to the molten pool created by the high-intensity ultrasound is the key factor that affects the crystal characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA