Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Chem Sci ; 15(14): 5349-5359, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577372

RESUMO

Silver compounds have favorable properties as promising anticancer drug candidates, such as low side effects, anti-inflammatory properties, and high potential to overcome drug resistance. However, the exact mechanism by which Ag(i) confers anticancer activity remains unclear, which hinders further development of anticancer applications of silver compounds. Here, we combine thermal proteome profiling, cysteine profiling, and ubiquitome profiling to study the molecular mechanisms of silver(i) complexes supported by non-toxic thiourea (TU) ligands. Through the formation of AgTU complexes, TU ligands deliver Ag+ ions to cancer cells and tumour xenografts to elicit inhibitory potency. Our chemical proteomics studies show that AgTU acts on the ubiquitin-proteasome system (UPS) and disrupts protein homeostasis, which has been identified as a main anticancer mechanism. Specifically, Ag+ ions are released from AgTU in the cellular environment, directly target the 19S proteasome regulatory complex, and may oxidize its cysteine residues, thereby inhibiting proteasomal activity and accumulating ubiquitinated proteins. After AgTU treatment, proteasome subunits are massively ubiquitinated and aberrantly aggregated, leading to impaired protein homeostasis and paraptotic death of cancer cells. This work reveals the unique anticancer mechanism of Ag(i) targeting the 19S proteasome regulatory complex and opens up new avenues for optimizing silver-based anticancer efficacy.

3.
Clin Epigenetics ; 16(1): 28, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355645

RESUMO

BACKGROUND: E-cadherin, a major actor of cell adhesion in the intestinal barrier, is encoded by the CDH1 gene associated with susceptibility to Crohn Disease (CD) and colorectal cancer. Since epigenetic mechanisms are suspected to contribute to the multifactorial pathogenesis of CD, we studied CpG methylation at the CDH1 locus. The methylation of the CpG island (CGI) and of the 1st enhancer, two critical regulatory positions, was quantified in surgical specimens of inflamed ileal mucosa and in peripheral blood mononuclear cells (PBMC) of 21 CD patients. Sixteen patients operated on for a non-inflammatory bowel disease, although not normal controls, provided a macroscopically normal ileal mucosa and PBMC for comparison. RESULTS: In ileal mucosa, 19/21 (90%) CD patients vs 8/16 control patients (50%) (p < 0.01) had a methylated CDH1 promoter CGI. In PBMC, CD patients with methylated CGI were 11/21 (52%) vs 7/16 controls (44%), respectively. Methylation in the 1st enhancer of CDH1 was also higher in the CD group for each of the studied CpGs and for their average value (45 ± 17% in CD patients vs 36 ± 17% in controls; p < 0.001). Again, methylation was comparable in PBMC. Methylation of CGI and 1st enhancer were not correlated in mucosa or PBMC. CONCLUSIONS: Methylation of several CpGs at the CDH1 locus was increased in the inflamed ileal mucosa, not in the PBMC, of CD patients, suggesting the association of CDH1 methylation with ileal inflammation. Longitudinal studies will explore if this increased methylation is a risk marker for colorectal cancer.


Assuntos
Neoplasias Colorretais , Doença de Crohn , Humanos , Metilação de DNA , Leucócitos Mononucleares/metabolismo , Doença de Crohn/genética , Ilhas de CpG , Caderinas/genética , Neoplasias Colorretais/genética , Antígenos CD/genética , Antígenos CD/metabolismo
4.
Environ Health Perspect ; 132(1): 17008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38294233

RESUMO

BACKGROUND: The organochlorine dichlorodiphenyltrichloroethane (DDT) is banned worldwide owing to its negative health effects. It is exceptionally used as an insecticide for malaria control. Exposure occurs in regions where DDT is applied, as well as in the Arctic, where its endocrine disrupting metabolite, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) accumulates in marine mammals and fish. DDT and p,p'-DDE exposures are linked to birth defects, infertility, cancer, and neurodevelopmental delays. Of particular concern is the potential of DDT use to impact the health of generations to come via the heritable sperm epigenome. OBJECTIVES: The objective of this study was to assess the sperm epigenome in relation to p,p'-DDE serum levels between geographically diverse populations. METHODS: In the Limpopo Province of South Africa, we recruited 247 VhaVenda South African men and selected 50 paired blood serum and semen samples, and 47 Greenlandic Inuit blood and semen paired samples were selected from a total of 193 samples from the biobank of the INUENDO cohort, an EU Fifth Framework Programme Research and Development project. Sample selection was based on obtaining a range of p,p'-DDE serum levels (mean=870.734±134.030 ng/mL). We assessed the sperm epigenome in relation to serum p,p'-DDE levels using MethylC-Capture-sequencing (MCC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq). We identified genomic regions with altered DNA methylation (DNAme) and differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3) in sperm. RESULTS: Differences in DNAme and H3K4me3 enrichment were identified at transposable elements and regulatory regions involved in fertility, disease, development, and neurofunction. A subset of regions with sperm DNAme and H3K4me3 that differed between exposure groups was predicted to persist in the preimplantation embryo and to be associated with embryonic gene expression. DISCUSSION: These findings suggest that DDT and p,p'-DDE exposure impacts the sperm epigenome in a dose-response-like manner and may negatively impact the health of future generations through epigenetic mechanisms. Confounding factors, such as other environmental exposures, genetic diversity, and selection bias, cannot be ruled out. https://doi.org/10.1289/EHP12013.


Assuntos
DDT , Diclorodifenil Dicloroetileno , Epigenoma , Sêmen , Humanos , Masculino , Estudos Transversais , DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Inuíte , África do Sul/epidemiologia , Espermatozoides , População Negra
6.
Cells ; 12(24)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132091

RESUMO

BACKGROUND: Macrophages and monocytes orchestrate inflammatory processes in the lungs. However, their role in the pathogenesis of chronic obstructive pulmonary disease (COPD), an inflammatory condition, is not well known. Here, we determined the characteristics of these cells in lungs of COPD patients and identified novel therapeutic targets. METHODS: We analyzed the RNA sequencing (scRNA-seq) data of explanted human lung tissue from COPD (n = 18) and control (n = 28) lungs and found 16 transcriptionally distinct groups of macrophages and monocytes. We performed pathway and gene enrichment analyses to determine the characteristics of macrophages and monocytes from COPD (versus control) lungs and to identify the therapeutic targets, which were then validated using data from a randomized controlled trial of COPD patients (DISARM). RESULTS: In the alveolar macrophages, 176 genes were differentially expressed (83 up- and 93 downregulated; Padj < 0.05, |log2FC| > 0.5) and were enriched in downstream biological processes predicted to cause poor lipid uptake and impaired cell activation, movement, and angiogenesis in COPD versus control lungs. Classical monocytes from COPD lungs harbored a differential gene set predicted to cause the activation, mobilization, and recruitment of cells and a hyperinflammatory response to influenza. In silico, the corticosteroid fluticasone propionate was one of the top compounds predicted to modulate the abnormal transcriptional profiles of these cells. In vivo, a fluticasone-salmeterol combination significantly modulated the gene expression profiles of bronchoalveolar lavage cells of COPD patients (p < 0.05). CONCLUSIONS: COPD lungs harbor transcriptionally distinct lung macrophages and monocytes, reflective of a dysfunctional and hyperinflammatory state. Inhaled corticosteroids and other compounds can modulate the transcriptomic profile of these cells in patients with COPD.


Assuntos
Macrófagos Alveolares , Monócitos , Doença Pulmonar Obstrutiva Crônica , Humanos , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Pulmão/metabolismo , Macrófagos/metabolismo , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Ensaios Clínicos Controlados não Aleatórios como Assunto , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
7.
Diabetes Care ; 46(12): 2201-2207, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37770056

RESUMO

OBJECTIVE: To examine whether participants with different levels of diabetes-related DNA methylation at ABCG1 might respond differently to dietary weight loss interventions with long-term changes in adiposity and body fat distribution. RESEARCH DESIGN AND METHODS: The current study included overweight/obese participants from the POUNDS Lost trial. Blood levels of regional DNA methylation at ABCG1 were profiled by high-resolution methylC-capture sequencing at baseline among 673 participants, of whom 598 were followed up at 6 months and 543 at 2 years. Two-year changes in adiposity and computed tomography-measured body fat distribution were calculated. RESULTS: Regional DNA methylation at ABCG1 showed significantly different associations with long-term changes in body weight and waist circumference at 6 months and 2 years in dietary interventions varying in protein intake (interaction P < 0.05 for all). Among participants assigned to an average-protein (15%) diet, lower baseline regional DNA methylation at ABCG1 was associated with greater reductions in body weight and waist circumference at 6 months and 2 years, whereas opposite associations were found among those assigned to a high-protein (25%) diet. Similar interaction patterns were also observed for body fat distribution, including visceral adipose tissue, subcutaneous adipose tissue, deep subcutaneous adipose tissue, and total adipose tissue at 6 months and 2 years (interaction P < 0.05 for all). CONCLUSIONS: Baseline DNA methylation at ABCG1 interacted with dietary protein intake on long-term decreases in adiposity and body fat distribution. Participants with lower methylation at ABCG1 benefitted more in long-term reductions in body weight, waist circumference, and body fat distribution when consuming an average-protein diet.


Assuntos
Adiposidade , Metilação de DNA , Humanos , Adiposidade/genética , Metilação de DNA/genética , Proteínas Alimentares , Dieta Redutora , Obesidade/genética , Peso Corporal/genética , Circunferência da Cintura , Índice de Massa Corporal , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética
8.
Anal Chem ; 95(29): 11124-11131, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439785

RESUMO

Recent discoveries of noncanonical RNA caps, such as nicotinamide adenine dinucleotide (NAD+) and 3'-dephospho-coenzyme A (dpCoA), have expanded our knowledge of RNA caps. Although dpCoA has been known to cap RNAs in various species, the identities of its capped RNAs (dpCoA-RNAs) remained unknown. To fill this gap, we developed a method called dpCoA tagSeq, which utilized a thiol-reactive maleimide group to label dpCoA cap with a tag RNA serving as the 5' barcode. The barcoded RNAs were isolated using a complementary DNA strand of the tag RNA prior to direct sequencing by nanopore technology. Our validation experiments with model RNAs showed that dpCoA-RNA was efficiently tagged and captured using this protocol. To confirm that the tagged RNAs are capped by dpCoA and no other thiol-containing molecules, we used a pyrophosphatase NudC to degrade the dpCoA cap to adenosine monophosphate (AMP) moiety before performing the tagSeq protocol. We identified 44 genes that transcribe dpCoA-RNAs in mouse liver, demonstrating the method's effectiveness in identifying and characterizing the capped RNAs. This strategy provides a viable approach to identifying dpCoA-RNAs that allows for further functional investigations of the cap.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Animais , Camundongos , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Coenzima A , Maleimidas
9.
Clin Epigenetics ; 15(1): 82, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170172

RESUMO

BACKGROUND: Children conceived through assisted reproduction are at an increased risk for growth and genomic imprinting disorders, often linked to DNA methylation defects. It has been suggested that assisted reproductive technology (ART) and underlying parental infertility can induce epigenetic instability, specifically interfering with DNA methylation reprogramming events during germ cell and preimplantation development. To date, human studies exploring the association between ART and DNA methylation defects have reported inconsistent or inconclusive results, likely due to population heterogeneity and the use of technologies with limited coverage of the epigenome. In our study, we explored the epigenetic risk of ART by comprehensively profiling the DNA methylome of 73 human cord blood samples of singleton pregnancies (n = 36 control group, n = 37 ART/hypofertile group) from a human prospective longitudinal birth cohort, the 3D (Design, Develop, Discover) Study, using a high-resolution sequencing-based custom capture panel that examines over 2.4 million autosomal CpGs in the genome. RESULTS: We identified evidence of sex-specific effects of ART/hypofertility on cord blood DNA methylation patterns. Our genome-wide analyses identified ~ 46% more CpGs affected by ART/hypofertility in female than in male infant cord blood. We performed a detailed analysis of three imprinted genes which have been associated with altered DNA methylation following ART (KCNQ1OT1, H19/IGF2 and GNAS) and found that female infant cord blood was associated with DNA hypomethylation. When compared to less invasive procedures such as intrauterine insemination, more invasive ARTs (in vitro fertilization, intracytoplasmic sperm injection, embryo culture) resulted in more marked and distinct effects on the cord blood DNA methylome. In the in vitro group, we found a close to fourfold higher proportion of significantly enriched Gene Ontology terms involved in development than in the in vivo group. CONCLUSIONS: Our study highlights the ability of a sensitive, targeted, sequencing-based approach to uncover DNA methylation perturbations in cord blood associated with hypofertility and ART and influenced by offspring sex and ART technique invasiveness.


Assuntos
Metilação de DNA , Epigenoma , Gravidez , Criança , Masculino , Humanos , Feminino , Estudos Prospectivos , Estudo de Associação Genômica Ampla , Sangue Fetal/metabolismo , Sêmen , Técnicas de Reprodução Assistida/efeitos adversos , Impressão Genômica
10.
Hypertension ; 80(6): 1223-1230, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37039021

RESUMO

BACKGROUND: DNA methylation (DNAm) may play a critical role in bridging prenatal adverse events and cardiometabolic disorders including hypertension in later life. METHODS: We included 672 adult participants with overweight or obesity, who participated in a 2-year randomized weight-loss dietary intervention study. We defined the regional DNAm levels as the average methylation level of 5'-cytosine-phosphate-guanine-3' within 500 bp of LINC00319 (cg01820192), ATP2B1 (cg00508575), and LMNA (cg12593793), respectively. Generalized linear regression models were used to assess the association between the regional DNAm and 2-year blood pressure changes. Trajectory analysis was used to identify subgroups that shared a similar underlying trajectory of 2-year blood pressure changes. RESULTS: The regional DNAm at LINC00319, showed significantly different associations with 2-year changes in systolic blood pressure and diastolic blood pressure among participants assigned to low- or high-fat diets (P for interaction<0.05 for all). In response to the low-fat diet, per SD higher regional DNAm at LINC00319 was associated with greater reductions in both 2-year changes in systolic blood pressure (ß, -1.481; P=0.020) and diastolic blood pressure (ß, -1.096; P=0.009). Three trajectories of changes in systolic blood pressure or diastolic blood pressure were identified, and participants with higher regional DNAm at LINC00319 were more likely to experience and maintain decreased systolic blood pressure and diastolic blood pressure (odds ratio of being in decrease-stable versus stable [95% CI], 1.542 [1.146-2.076] and 1.463 [1.125-1.902]). CONCLUSIONS: Our findings suggest that DNAm could be a metabolic memory bridging early and later life, and an indicator of more benefits from eating a low-fat weight-loss diet.


Assuntos
Metilação de DNA , Obesidade , Adulto , Humanos , Pressão Sanguínea/genética , Peso ao Nascer , Obesidade/genética , Redução de Peso/genética , Dieta com Restrição de Gorduras , ATPases Transportadoras de Cálcio da Membrana Plasmática
11.
Mar Pollut Bull ; 189: 114712, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36827773

RESUMO

The vast coastline provides Canada with a flourishing seafood industry including bivalve shellfish production. To sustain a healthy bivalve molluscan shellfish production, the Canadian Shellfish Sanitation Program was established to monitor the health of shellfish harvesting habitats, and fecal coliform bacteria data have been collected at nearly 15,000 marine sample sites across six coastal provinces in Canada since 1979. We applied Functional Principal Component Analysis and subsequent correlation analyses to find annual variation patterns of bacteria levels at sites in each province. The overall magnitude and the seasonality of fecal contamination were modelled by functional principal component one and two, respectively. The amplitude was related to human and warm-blooded animal activities; the seasonality was strongly correlated with river discharge driven by precipitation and snow melt in British Columbia, but such correlation in provinces along the Atlantic coast could not be properly evaluated due to lack of data during winter.


Assuntos
Bivalves , Animais , Humanos , Estações do Ano , Frutos do Mar , Bactérias Gram-Negativas , Colúmbia Britânica
12.
J Clin Endocrinol Metab ; 108(8): e542-e549, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-36800272

RESUMO

CONTEXT: Carnitine palmitoyltransferase-1A, encoded by the CPT1A gene, plays a key role in the oxidation of long-chain fatty acids in the mitochondria and may be important in triglyceride metabolism. Previous work has shown that high fat intake was negatively associated with CPT1A methylation and positively associated with CPT1A expression. OBJECTIVE: We aim to investigate the association of DNA methylation (DNAm) at the CPT1A gene with reductions in triglycerides and triglyceride-rich lipoproteins (TRLs) in response to weight-loss diet interventions. METHODS: The current study included 538 White participants, who were randomly assigned to 1 of 4 diets varying in macronutrient components. We defined the regional DNAm at CPT1A as the average methylation level over CpGs within 500 bp of the 3 triglyceride-related DNAm sites. RESULTS: Dietary fat intake significantly modified the association between baseline DNAm at CPT1A and 2-year changes in total plasma triglycerides, independent of concurrent weight loss. Among participants assigned to a low-fat diet, a higher regional DNAm level at CPT1A was associated with a greater reduction in total plasma triglycerides at 2 years (P = .01), compared with those assigned to a high-fat diet (P = .64) (P interaction = .018). Further investigation on lipids and apolipoproteins in very low-density lipoprotein (VLDL) revealed similar interaction patterns for 2-year changes in VLDL-triglycerides, VLDL-cholesterol, and VLDL-apolipoprotein B (P interaction = .009, .002, and .016, respectively), but not for VLDL-apoC-III (P interaction = .36). CONCLUSION: Participants with a higher regional DNAm level at CPT1A benefit more in long-term improvement in triglycerides, particularly in the TRLs and related apolipoproteins when consuming a low-fat weight-loss diet.


Assuntos
Carnitina O-Palmitoiltransferase , Metilação de DNA , Humanos , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Carnitina O-Palmitoiltransferase/genética , Dieta Redutora , Lipoproteínas , Lipoproteínas LDL , Lipoproteínas VLDL , Triglicerídeos
13.
Commun Biol ; 5(1): 1279, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418427

RESUMO

Dementia with Lewy bodies (DLB) is a common form of dementia with known genetic and environmental interactions. However, the underlying epigenetic mechanisms which reflect these gene-environment interactions are poorly studied. Herein, we measure genome-wide DNA methylation profiles of post-mortem brain tissue (Broadmann area 7) from 15 pathologically confirmed DLB brains and compare them with 16 cognitively normal controls using Illumina MethylationEPIC arrays. We identify 17 significantly differentially methylated CpGs (DMCs) and 17 differentially methylated regions (DMRs) between the groups. The DMCs are mainly located at the CpG islands, promoter and first exon regions. Genes associated with the DMCs are linked to "Parkinson's disease" and "metabolic pathway", as well as the diseases of "severe intellectual disability" and "mood disorders". Overall, our study highlights previously unreported DMCs offering insights into DLB pathogenesis with the possibility that some of these could be used as biomarkers of DLB in the future.


Assuntos
Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/genética , Autopsia , Biomarcadores , Encéfalo , Ilhas de CpG
14.
Transplant Direct ; 8(11): e1394, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36259078

RESUMO

Transcriptional regulation of liver transplant (LT) rejection may reveal novel predictive and therapeutic targets. The purpose of this article is to test the role of differential DNA methylation in children with biopsy-proven acute cellular rejection after LT. Methods: Paired peripheral blood DNA samples were obtained before and after LT from 17 children, including 4 rejectors (Rs) and 13 nonrejectors (NRs), and assayed with MethylC capture sequencing approach covering 5 million CpGs in immune-cell-specific regulatory elements. Differentially methylated CpGs (DMCs) were identified using generalized linear regression models adjusting for sex and age and merged into differentially methylated regions (DMRs) comprising 3 or more DMCs. Results: Contrasting Rs versus NRs, we identified 2238 DMCs in post-LT and 2620 DMCs in pre-LT samples, which clustered in 216 and 282 DMRs, respectively. DMCs associated with R were enriched in enhancers and depleted in promoters. Among DMRs, the proportion of hypomethylated DMRs increased from 61/282 (22%) in pre-LT to 103/216 (48%, P < 0.0001) in post-LT samples. The highest-ranked biological processes enriched in post-LT DMCs were antigen processing and presentation via major histocompatibility complex (MHC) class I, MHC class I complex, and peptide binding (P < 7.92 × 10-17), respectively. Top-ranked DMRs mapped to genes that mediate B-cell receptor signaling (ADAP1) or regulate several immune cells (ARRB2) (P < 3.75 × 10-08). DMRs in MHC class I genes were enriched for single nucleotide polymorphisms (SNPs), which bind transcription factors, affect gene expression and splicing, or alter peptide-binding amino acid sequences. Conclusions: Dynamic methylation in distal regulatory regions reveals known transplant-relevant MHC-dependent rejection pathways and identifies novel loci for future mechanistic evaluations in pediatric transplant subcohorts.

15.
Clin Epigenetics ; 14(1): 65, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585611

RESUMO

BACKGROUND: Recombinant human growth hormone (rhGH) has shown a great growth-promoting potential in children with idiopathic short stature (ISS). However, the response to rhGH differs across individuals, largely due to genetic and epigenetic heterogeneity. Since epigenetic marks on the methylome can be dynamically influenced by GH, we performed a comprehensive pharmacoepigenomics analysis of DNA methylation changes associated with long-term rhGH administration in children with ISS. RESULTS: We measured DNA methylation profiles before and after GH treatment (with a duration of ~ 18 months in average) on 47 healthy children using customized methylC-seq capture sequencing. Their changes were compared and associated with changes in plasma IGF1 by adjusting sex, age, treatment duration and estimated blood proportions. We observed a considerable inter-individual heterogeneity of DNA methylation changes responding to GH treatment. We identified 267 response-associated differentially methylated cytosines (DMCs) that were enriched in promoter regions, CpG islands and blood cell-type-specific regulatory elements. Furthermore, the genes associated with these DMCs were enriched in the biology process of "cell development," "neuron differentiation" and "developmental growth," and in the TGF-beta signaling pathway, PPAR Alpha pathway, endoderm differentiation pathway, adipocytokine signaling pathway as well as PI3K-Akt signaling pathway, and cAMP signaling pathway. CONCLUSION: Our study provides a first insight in DNA methylation changes associated with rhGH administration, which may help understand mechanisms of epigenetic regulation on GH-responsive genes.


Assuntos
Ilhas de CpG , Metilação de DNA , Transtornos do Crescimento , Hormônio do Crescimento Humano , Criança , Epigênese Genética , Transtornos do Crescimento/sangue , Transtornos do Crescimento/tratamento farmacológico , Hormônio do Crescimento Humano/administração & dosagem , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Recombinantes
16.
Int J Obes (Lond) ; 46(6): 1122-1127, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35165382

RESUMO

BACKGROUND: Thioredoxin Interacting Protein (TXNIP) functions as a master regulator for glucose homeostasis. Hypomethylation at the 5'-cytosine-phosphate-guanine-3' (CpG) site cg19693031 of TXNIP has been consistently related to islet dysfunction, hyperglycemia, and type 2 diabetes. DNA methylation (DNAm) may reveal the missing mechanistic link between obesity and type 2 diabetes. We hypothesize that baseline DNAm level at TXNIP in blood may be associated with glycemic traits and their changes in response to weight-loss diet interventions. METHODS: We included 639 adult participants with overweight or obesity, who participated in a 2-year randomized weight-loss diet intervention. Baseline blood DNAm levels were profiled by high-resolution methylC-capture sequencing. We defined the regional DNAm level of TXNIP as the average methylation level over CpGs within 500 bp of cg19693031. Generalized linear regression models were used for main analyses. RESULTS: We found that higher regional DNAm at TXNIP was significantly correlated with lower fasting glucose, HbA1c, and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) at baseline (P < 0.05 for all). Significant interactions were observed between dietary protein intake and DNAm on changes in insulin (P-interaction = 0.007) and HOMA-IR (P-interaction = 0.009) at 6 months. In participants with the highest tertile of regional DNAm at TXNIP, average protein (15%) intake was associated with a greater reduction in insulin (ß: -0.14; 95% CI: -0.24, -0.03; P = 0.011) and HOMA-IR (ß: -0.15; 95% CI: -0.26, -0.03; P = 0.014) than high protein (25%) intake, whereas no significant associations were found in those with the lower tertiles (P > 0.05). The interaction was attenuated to be non-significant at 2 years, presumably related to decreasing adherence to the diet intervention. CONCLUSIONS: Our data indicate that higher regional DNAm level at TXNIP was significantly associated with better fasting glucose, HbA1c, and HOMA-IR; and people with higher regional DNAm levels benefited more in insulin and HOMA-IR improvement by taking the average-protein weight-loss diet.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Glicemia/metabolismo , Proteínas de Transporte/metabolismo , Metilação de DNA , Diabetes Mellitus Tipo 2/metabolismo , Dieta Redutora , Proteínas Alimentares , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Obesidade/complicações
17.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34791019

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of deaths around the world. To help contribute to the understanding of crucial knowledge and to further generate new hypotheses relevant to SARS-CoV-2 and human protein interactions, we make use of the information abundant Biomine probabilistic database and extend the experimentally identified SARS-CoV-2-human protein-protein interaction (PPI) network in silico. We generate an extended network by integrating information from the Biomine database, the PPI network and other experimentally validated results. To generate novel hypotheses, we focus on the high-connectivity sub-communities that overlap most with the integrated experimentally validated results in the extended network. Therefore, we propose a new data analysis pipeline that can efficiently compute core decomposition on the extended network and identify dense subgraphs. We then evaluate the identified dense subgraph and the generated hypotheses in three contexts: literature validation for uncovered virus targeting genes and proteins, gene function enrichment analysis on subgraphs and literature support on drug repurposing for identified tissues and diseases related to COVID-19. The major types of the generated hypotheses are proteins with their encoding genes and we rank them by sorting their connections to the integrated experimentally validated nodes. In addition, we compile a comprehensive list of novel genes, and proteins potentially related to COVID-19, as well as novel diseases which might be comorbidities. Together with the generated hypotheses, our results provide novel knowledge relevant to COVID-19 for further validation.


Assuntos
COVID-19 , Simulação por Computador , Modelos Biológicos , Mapas de Interação de Proteínas , COVID-19/genética , COVID-19/metabolismo , Humanos , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
18.
Genes (Basel) ; 12(9)2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-34573331

RESUMO

High levels of anti-citrullinated protein antibodies (ACPA) are often observed prior to a diagnosis of rheumatoid arthritis (RA). We undertook a replication study to confirm CpG sites showing evidence of differential methylation in subjects positive vs. negative for ACPA, in a new subset of 112 individuals sampled from the population cohort and biobank CARTaGENE in Quebec, Canada. Targeted custom capture bisulfite sequencing was conducted at approximately 5.3 million CpGs located in regulatory or hypomethylated regions from whole blood; library and protocol improvements had been instituted between the original and this replication study, enabling better coverage and additional identification of differentially methylated regions (DMRs). Using binomial regression models, we identified 19,472 ACPA-associated differentially methylated cytosines (DMCs), of which 430 overlapped with the 1909 DMCs reported by the original study; 814 DMRs of relevance were clustered by grouping adjacent DMCs into regions. Furthermore, we performed an additional integrative analysis by looking at the DMRs that overlap with RA related loci published in the GWAS Catalog, and protein-coding genes associated with these DMRs were enriched in the biological process of cell adhesion and involved in immune-related pathways.


Assuntos
Anticorpos Antiproteína Citrulinada/sangue , Artrite Reumatoide/genética , Ilhas de CpG , Metilação de DNA , Artrite Reumatoide/sangue , Citosina/metabolismo , Bases de Dados Factuais , Epigenoma , Feminino , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
19.
Cell Rep ; 36(3): 109418, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289352

RESUMO

The paternal environment has been linked to infertility and negative outcomes. Such effects may be transmitted via sperm through histone modifications. To date, in-depth profiling of the sperm chromatin in men has been limited. Here, we use deep sequencing to characterize the sperm profiles of histone H3 lysine 4 tri-methylation (H3K4me3) and DNA methylation in a representative reference population of 37 men. Our analysis reveals that H3K4me3 is localized throughout the genome and at genes for fertility and development. Remarkably, enrichment is also found at regions that escape epigenetic reprogramming in primordial germ cells, embryonic enhancers, and short-interspersed nuclear elements (SINEs). There is significant overlap in H3K4me3 and DNA methylation throughout the genome, suggesting a potential interplay between these marks previously reported to be mutually exclusive in sperm. Comparisons made between H3K4me3 marked regions in sperm and the embryonic transcriptome suggest an influence of paternal chromatin on embryonic gene expression.


Assuntos
Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Fertilidade/genética , Histonas/genética , Espermatozoides/metabolismo , Sequenciamento Completo do Genoma , Reprogramação Celular/genética , Ilhas de CpG/genética , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Espermatogênese/genética
20.
EClinicalMedicine ; 38: 101035, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34308301

RESUMO

BACKGROUND: Many countries have implemented lockdowns to reduce COVID-19 transmission. However, there is no consensus on the optimal timing of these lockdowns to control community spread of the disease. Here we evaluated the relationship between timing of lockdowns, along with other risk factors, and the growth trajectories of COVID-19 across 3,112 counties in the US. METHODS: We ascertained dates for lockdowns and implementation of various non-pharmaceutical interventions at a county level and merged these data with those of US census and county-specific COVID-19 daily cumulative case counts. We then applied a Functional Principal Component (FPC) analysis on this dataset to generate FPC scores, which were used as a surrogate variable to describe the trajectory of daily cumulative case counts for each county. We used machine learning methods to identify risk factors including the timing of lockdown that significantly influenced the FPC scores. FINDINGS: We found that the first eigen-function accounted for most (>92%) of the variations in the daily cumulative case counts. The impact of lockdown timing on the total daily case count of a county became significant beginning approximately 7 days prior to that county reporting at least 5 cumulative cases of COVID-19. Delays in lockdown implementation after this date led to a rapid acceleration of COVID-19 spread in the county over the first ~50 days from the date with at least 5 cumulative cases, and higher case counts across the entirety of the follow-up period. Other factors such as total population, median family income, Gini index, median age, and within-county mobility also had a substantial effect. When adjusted for all these factors, the timing of lockdowns was the most significant risk factor associated with the county-specific daily cumulative case counts. INTERPRETATION: Lockdowns are an effective way of controlling the spread of COVID-19 in communities. Significant delays in lockdown cause a dramatic increase in the cumulative case counts. Thus, the timing of the lockdown relative to the case count is an important consideration in controlling the pandemic in communities. FUNDING: The study period is from June 2020 to July 2021. Dr. Xuekui Zhang is a Tier 2 Canada Research Chairs (Grant No. 950231363) and funded by Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN201704722). Dr. Li Xing is funded by Natural Sciences and Engineering Research Council of Canada (Grant Number: RGPIN 202103530). This research was enabled in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada (www.computecanada.ca). The computing resource is provided by Compute Canada Resource Allocation Competitions #3495 (PI: Xuekui Zhang) and #1551 (PI: Li Xing). Dr. Don Sin is a Tier 1 Canada Research Chair in COPD and holds the de Lazzari Family Chair at the Heart Lung Innovation, Vancouver, Canada.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA