Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Urol ; 211(3): 445-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134235

RESUMO

PURPOSE: There are limited data on ablation effects of thulium fiber laser (TFL) settings with varying stone composition. Similarly, little is known surrounding the photothermal effects of TFL lithotripsy regarding the chemical and structural changes after visible char formation. We aim to understand the TFL's ablative efficiency across various stone types and laser settings, while simultaneously investigating the photothermal effects of TFL lithotripsy. MATERIALS AND METHODS: Human specimens of calcium oxalate monohydrate, calcium oxalate dihydrate, uric acid, struvite, cystine, carbonate apatite, and brushite stones were ablated using 13 prespecified settings with the Coloplast TFL Drive. Pre- and postablation mass, ablation time, and total energy were recorded. Qualitative ablative observations were recorded at 1-minute intervals with photographs and gross description. Samples were analyzed with Fourier-transform infrared spectroscopy pre- and postablation and electron microscopy postablation to assess the photothermal effects of TFL. RESULTS: Across all settings and stone types, 0.05 J × 1000 Hz was the best numerically efficient ablation setting. When selected for more clinically relevant laser settings (ie, 10-20 W), 0.2 J × 100 Hz, short pulse was the most numerically efficient setting for calcium oxalate dihydrate, cystine, and struvite stones. Calcium oxalate monohydrate ablated with the best numerical efficiency at 0.4 J × 40 Hz, short pulse. Uric acid and carbonate apatite stones ablated with the best numerical efficiency at 0.3 J × 60 Hz, short pulse. Brushite stones ablated with the best numerical efficiency at 0.5 J × 30 Hz, short pulse. Pulse duration impacted ablation effectiveness greatly with 6/8 (75%) of inadequate ablations occurring in medium or long pulse settings. The average percent of mass lost during ablation was 57%; cystine stones averaged the highest percent mass lost at 71%. Charring was observed in 36/91 (40%) specimens. Charring was most often seen in uric acid, cystine, and brushite stones across all laser settings. Electron microscopy of char demonstrated a porous melting effect different to that of brittle fracture. Fourier-transform infrared spectroscopy of brushite char demonstrated a chemical composition change to amorphous calcium phosphate. CONCLUSIONS: We describe the optimal ablation settings based on stone composition, which may guide urologists towards more stone-specific care when using thulium laser for treating renal stones (lower energy settings would be safer for ureteral stones). For patients with unknown stone composition, lasers can be preset to target common stone types or adjusted based on visual cues. We recommend using short pulse for all TFL lithotripsy of calculi and altering the settings based on visual cues and efficiency to minimize the charring, an effect which can make the stone refractory to further dusting and fragmentation.


Assuntos
Apatitas , Fosfatos de Cálcio , Cálculos Renais , Lasers de Estado Sólido , Litotripsia a Laser , Cálculos Urinários , Humanos , Cálculos Urinários/cirurgia , Cálculos Urinários/química , Túlio/química , Estruvita , Cistina , Ácido Úrico , Cálculos Renais/terapia , Lasers , Litotripsia a Laser/métodos , Lasers de Estado Sólido/uso terapêutico
3.
Nat Commun ; 14(1): 8261, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086835

RESUMO

Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.

5.
Nat Commun ; 14(1): 6200, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794007

RESUMO

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe2. The ferroelectric domains are visualized through the imaging of the plasmonic response in a graphene monolayer adjacent to the moiré WSe2 bilayers. Specifically, we find that the ferroelectric polarization in moiré domains is imprinted on the plasmonic response of the graphene. Complementary nano-photocurrent measurements demonstrate that the optoelectronic properties of graphene are also modulated by the proximal ferroelectric domains. Our approach represents an alternative strategy for studying moiré ferroelectricity at native length scales and opens promising prospects for (opto)electronic devices.

6.
Nat Nanotechnol ; 18(12): 1409-1415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605044

RESUMO

Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.

7.
Nat Mater ; 22(7): 838-843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36997689

RESUMO

Plasmon polaritons in van der Waals materials hold promise for various photonics applications1-4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light-matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.


Assuntos
Grafite , Elétrons , Óxidos
8.
Sci Adv ; 8(43): eadd6169, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288317

RESUMO

Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.

9.
Nat Commun ; 13(1): 542, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087038

RESUMO

Excitons play a dominant role in the optoelectronic properties of atomically thin van der Waals (vdW) semiconductors. These excitons are amenable to on-demand engineering with diverse control knobs, including dielectric screening, interlayer hybridization, and moiré potentials. However, external stimuli frequently yield heterogeneous excitonic responses at the nano- and meso-scales, making their spatial characterization with conventional diffraction-limited optics a formidable task. Here, we use a scattering-type scanning near-field optical microscope (s-SNOM) to acquire exciton spectra in atomically thin transition metal dichalcogenide microcrystals with previously unattainable 20 nm resolution. Our nano-optical data revealed material- and stacking-dependent exciton spectra of MoSe2, WSe2, and their heterostructures. Furthermore, we extracted the complex dielectric function of these prototypical vdW semiconductors. s-SNOM hyperspectral images uncovered how the dielectric screening modifies excitons at length scales as short as few nanometers. This work paves the way towards understanding and manipulation of excitons in atomically thin layers at the nanoscale.

10.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819380

RESUMO

Chiral Weyl fermions with linear energy-momentum dispersion in the bulk accompanied by Fermi-arc states on the surfaces prompt a host of enticing optical effects. While new Weyl semimetal materials keep emerging, the available optical probes are limited. In particular, isolating bulk and surface electrodynamics in Weyl conductors remains a challenge. We devised an approach to the problem based on near-field photocurrent imaging at the nanoscale and applied this technique to a prototypical Weyl semimetal TaIrTe4 As a first step, we visualized nano-photocurrent patterns in real space and demonstrated their connection to bulk nonlinear conductivity tensors through extensive modeling augmented with density functional theory calculations. Notably, our nanoscale probe gives access to not only the in-plane but also the out-of-plane electric fields so that it is feasible to interrogate all allowed nonlinear tensors including those that remained dormant in conventional far-field optics. Surface- and bulk-related nonlinear contributions are distinguished through their "symmetry fingerprints" in the photocurrent maps. Robust photocurrents also appear at mirror-symmetry breaking edges of TaIrTe4 single crystals that we assign to nonlinear conductivity tensors forbidden in the bulk. Nano-photocurrent spectroscopy at the boundary reveals a strong resonance structure absent in the interior of the sample, providing evidence for elusive surface states.

11.
Nat Commun ; 12(1): 5594, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552072

RESUMO

Tungsten ditelluride (WTe2) is an atomically layered transition metal dichalcogenide whose physical properties change systematically from monolayer to bilayer and few-layer versions. In this report, we use apertureless scattering-type near-field optical microscopy operating at Terahertz (THz) frequencies and cryogenic temperatures to study the distinct THz range electromagnetic responses of mono-, bi- and trilayer WTe2 in the same multi-terraced micro-crystal. THz nano-images of monolayer terraces uncovered weakly insulating behavior that is consistent with transport measurements. The near-field signal on bilayer regions shows moderate metallicity with negligible temperature dependence. Subdiffractional THz imaging data together with theoretical calculations involving thermally activated carriers favor the semimetal scenario with [Formula: see text] over the semiconductor scenario for bilayer WTe2. Also, we observed clear metallic behavior of the near-field signal on trilayer regions. Our data are consistent with the existence of surface plasmon polaritons in the THz range confined to trilayer terraces in our specimens. Finally, data for microcrystals up to 12 layers thick reveal how the response of a few-layer WTe2 asymptotically approaches the bulk limit.

12.
Nat Commun ; 12(1): 2649, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976184

RESUMO

Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators.

13.
Nat Commun ; 11(1): 3567, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678086

RESUMO

Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the optical constants following femtosecond photoexcitation. By monitoring the phase velocity of the waveguide modes, we detect incoherent A-exciton bleaching along with a coherent optical Stark shift in WSe2.

14.
Proc Natl Acad Sci U S A ; 116(4): 1168-1173, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30559211

RESUMO

Using polarized optical and magneto-optical spectroscopy, we have demonstrated universal aspects of electrodynamics associated with Dirac nodal lines that are found in several classes of unconventional intermetallic compounds. We investigated anisotropic electrodynamics of [Formula: see text] where the spin-orbit coupling (SOC) triggers energy gaps along the nodal lines. These gaps manifest as sharp steps in the optical conductivity spectra [Formula: see text] This behavior is followed by the linear power-law scaling of [Formula: see text] at higher frequencies, consistent with our theoretical analysis for dispersive Dirac nodal lines. Magneto-optics data affirm the dominant role of nodal lines in the electrodynamics of [Formula: see text].

15.
Nano Lett ; 17(9): 5285-5290, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28805397

RESUMO

We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

16.
Nano Lett ; 17(1): 255-260, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936794

RESUMO

We report mid-infrared spectroscopy measurements of ultrathin, electrostatically gated (Bi1-xSbx)2Te3 topological insulator films in which we observe several percent modulation of transmittance and reflectance as gating shifts the Fermi level. Infrared transmittance measurements of gated films were enabled by use of an epitaxial lift-off method for large-area transfer of topological insulator films from infrared-absorbing SrTiO3 growth substrates to thermal oxidized silicon substrates. We combine these optical experiments with transport measurements and angle-resolved photoemission spectroscopy to identify the observed spectral modulation as a gate-driven transfer of spectral weight between both bulk and 2D topological surface channels and interband and intraband channels. We develop a model for the complex permittivity of gated (Bi1-xSbx)2Te3 and find a good match to our experimental data. These results open the path for layered topological insulator materials as a new candidate for tunable, ultrathin infrared optics and highlight the possibility of switching topological optoelectronic phenomena between bulk and spin-polarized surface regimes.

17.
Nano Lett ; 17(2): 980-984, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28030948

RESUMO

Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)2Te3 thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the broad band Faraday rotation (FR) spectra. This comprehensive FR-CR data set has allowed us to isolate the response of the bulk states from the intrinsic surface states associated with both the top and bottom surfaces of the film. The FR data uncovered that electron- and hole-type Dirac Fermions reside on opposite surfaces of our films, which paves the way for observing many exotic quantum phenomena in topological insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA