Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Appl Clin Med Phys ; : e14383, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801204

RESUMO

OBJECTIVE: To assess the impact of scatter radiation on quantitative performance of first and second-generation dual-layer spectral computed tomography (DLCT) systems. METHOD: A phantom with two iodine inserts (1 and 2 mg/mL) configured to intentionally introduce high scattering conditions was scanned with a first- and second-generation DLCT. Collimation widths (maximum of 4 cm for first generation and 8 cm for second generation) and radiation dose levels were varied. To evaluate the performance of both systems, the mean CT numbers of virtual monoenergetic images (MonoEs) at different energies were calculated and compared to expected values. MonoEs at 50  versus 150 keV were plotted to assess material characterization of both DLCTs. Additionally, iodine concentrations were determined, plotted, and compared against expected values. For each experimental scenario, absolute errors were reported. RESULTS: An experimental setup, including a phantom design, was successfully implemented to simulate high scatter radiation imaging conditions. Both CT scanners illustrated high spectral accuracy for small collimation widths (1 and 2 cm). With increased collimation (4 cm), the second-generation DLCT outperformed the earlier DLCT system. Further, the spectral performance of the second-generation DLCT at an 8 cm collimation width was comparable to a 4 cm collimation on the first-generation DLCT. A comparison of the absolute errors between both systems at lower energy MonoEs illustrates that, for the same acquisition parameters, the second-generation DLCT generated results with decreased errors. Similarly, the maximum error in iodine quantification was less with second-generation DLCT (0.45  and 0.33 mg/mL for the first and second-generation DLCT, respectively). CONCLUSION: The implementation of a two-dimensional anti-scatter grid in the second-generation DLCT improves the spectral quantification performance. In the clinical routine, this improvement may enable additional clinical benefits, for example, in lung imaging.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38803525

RESUMO

Spectral computed tomography (CT) is a powerful diagnostic tool offering quantitative material decomposition results that enhance clinical imaging by providing physiologic and functional insights. Iodine, a widely used contrast agent, improves visualization in various clinical contexts. However, accurately detecting low-concentration iodine presents challenges in spectral CT systems, particularly crucial for conditions like pancreatic cancer assessment. In this study, we present preliminary results from our hybrid spectral CT instrumentation which includes clinical-grade hardware (rapid kVp-switching x-ray tube, dual-layer detector). This combination expands spectral datasets from two to four channels, wherein we hypothesize improved quantification accuracy for low-dose and low-iodine concentration cases. We modulate the system duty cycle to evaluate its impact on quantification noise and bias. We evaluate iodine quantification performance by comparing two hybrid weighting strategies alongside rapid kVp-switching. This evaluation is performed with a polyamide phantom containing seven iodine inserts ranging from 0.5 to 20 mg/mL. In comparison to alternative methodologies, the maximum separation configuration, incorporating data from both the 80 kVp, low photon energy detector layer and the 140 kVp, high photon energy detector layer produces spectral images containing low quantitative noise and bias. This study presents initial evaluations on a hybrid spectral CT system, leveraging clinical hardware to demonstrate the potential for enhanced precision and sensitivity in spectral imaging. This research holds promise for advancing spectral CT imaging performance across diverse clinical scenarios.

3.
Med Phys ; 51(5): 3265-3274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588491

RESUMO

BACKGROUND: The detectability performance of a CT scanner is difficult to precisely quantify when nonlinearities are present in reconstruction. An efficient detectability assessment method that is sensitive to small effects of dose and scanner settings is desirable. We previously proposed a method using a search challenge instrument: a phantom is embedded with hundreds of lesions at random locations, and a model observer is used to detect lesions. Preliminary tests in simulation and a prototype showed promising results. PURPOSE: In this work, we fabricated a full-size search challenge phantom with design updates, including changes to lesion size, contrast, and number, and studied our implementation by comparing the lesion detectability from a nonprewhitening (NPW) model observer between different reconstructions at different exposure levels, and by estimating the instrument sensitivity to detect changes in dose. METHODS: Designed to fit into QRM anthropomorphic phantoms, our search challenge phantom is a cylindrical insert 10 cm wide and 4 cm thick, embedded with 12 000 lesions (nominal width of 0.6 mm, height of 0.8 mm, and contrast of -350 HU), and was fabricated using PixelPrint, a 3D printing technique. The insert was scanned alone at a high dose to assess printing accuracy. To evaluate lesion detectability, the insert was placed in a QRM thorax phantom and scanned from 50 to 625 mAs with increments of 25 mAs, once per exposure level, and the average of all exposure levels was used as high-dose reference. Scans were reconstructed with three different settings: filtered-backprojection (FBP) with Br40 and Br59, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) with strength level 5 and Br59 kernel. An NPW model observer was used to search for lesions, and detection performance of different settings were compared using area under the exponential transform of free response ROC curve (AUC). Using propagation of uncertainty, the sensitivity to changes in dose was estimated by the percent change in exposure due to one standard deviation of AUC, measured from 5 repeat scans at 100, 200, 300, and 400 mAs. RESULTS: The printed insert lesions had an average position error of 0.20 mm compared to printing reference. As the exposure level increases from 50 mAs to 625 mAs, the lesion detectability AUCs increase from 0.38 to 0.92, 0.42 to 0.98, and 0.41 to 0.97 for FBP Br40, FBP Br59, and SAFIRE Br59, respectively, with a lower rate of increase at higher exposure level. FBP Br59 performed best with AUC 0.01 higher than SAFIRE Br59 on average and 0.07 higher than FBP Br40 (all P < 0.001). The standard deviation of AUC was less than 0.006, and the sensitivity to detect changes in mAs was within 2% for FBP Br59. CONCLUSIONS: Our 3D-printed search challenge phantom with 12 000 submillimeter lesions, together with an NPW model observer, provide an efficient CT detectability assessment method that is sensitive to subtle effects in reconstruction and is sensitive to small changes in dose.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Tomografia Computadorizada por Raios X , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos , Humanos
4.
J Appl Clin Med Phys ; 25(4): e14300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386967

RESUMO

PURPOSE: The aim of this study was to characterize a second-generation wide-detector dual-layer spectral computed tomography (CT) system for material quantification accuracy, acquisition parameter and patient size dependencies, and tissue characterization capabilities. METHODS: A phantom with multiple tissue-mimicking and material-specific inserts was scanned with a dual-layer spectral detector CT using different tube voltages, collimation widths, radiation dose levels, and size configurations. Accuracy of iodine density maps and virtual monoenergetic images (MonoE) were investigated. Additionally, differences between conventional and MonoE 70 keV images were calculated to evaluate acquisition parameter and patient size dependencies. To demonstrate material quantification and differentiation, liver-mimicking inserts with adipose and iron were analyzed with a two-base decomposition utilizing MonoE 50 and 150 keV, and root mean square error (RMSE) for adipose and iron content was reported. RESULTS: Measured inserts exhibited quantitative accuracy across a wide range of MonoE levels. MonoE 70 keV images demonstrated reduced dependence compared to conventional images for phantom size (1 vs. 27 HU) and acquisition parameters, particularly tube voltage (4 vs. 37 HU). Iodine density quantification was successful with errors ranging from -0.58 to 0.44 mg/mL. Similarly, inserts with different amounts of adipose and iron were differentiated, and the small deviation in values within inserts corresponded to a RMSE of 3.49 ± 1.76% and 1.67 ± 0.84 mg/mL for adipose and iron content, respectively. CONCLUSION: The second-generation dual-layer CT enables acquisition of quantitatively accurate spectral data without compromises from differences in patient size and acquisition parameters.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Obesidade , Ferro
5.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252974

RESUMO

Objectives. Evaluate the reproducibility, temperature tolerance, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations.Methods. Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating (35 °C-80 °C). Physical density maps were reconstructed from spectral results using varying reconstruction parameters. Thermal volumetric expansion was then measured at each temperature sensor every 5 °C in order to establish a correlation between physical density and temperature. Linear regressions were applied based on thermal volumetric expansion for each phantom, and coefficient of variation for fit parameters was calculated to characterize reproducibility of spectral CT thermometry. Additionally, temperature tolerance was determined to evaluate effects of acquisition and reconstruction parameters. The resulting minimum radiation dose to meet the clinical temperature accuracy requirement was determined for each slice thickness with and without additional denoising.Results. Thermal volumetric expansion was robustly replicated in all three phantoms, with a correlation coefficient variation of only 0.43%. Similarly, the coefficient of variation for the slope and intercept were 9.6% and 0.08%, respectively, indicating reproducibility of the spectral CT thermometry. Temperature tolerance ranged from 2 °C to 23 °C, decreasing with increased radiation dose, slice thickness, and iterative reconstruction level. To meet the clinical requirement for temperature tolerance, the minimum required radiation dose ranged from 20, 30, and 57 mGy for slice thickness of 2, 3, and 5 mm, respectively, but was reduced to 2 mGy with additional denoising.Conclusions. Spectral CT thermometry demonstrated reproducibility across three liver-mimicking phantoms and illustrated the clinical requirement for temperature tolerance can be met for different slice thicknesses. The reproducibility and temperature accuracy of spectral CT thermometry enable its clinical application for non-invasive temperature monitoring of thermal ablation.


Assuntos
Termometria , Reprodutibilidade dos Testes , Termometria/métodos , Temperatura , Fígado/diagnóstico por imagem , Fígado/cirurgia , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
6.
medRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873236

RESUMO

Objectives: Evaluate the reproducibility, temperature sensitivity, and radiation dose requirements of spectral CT thermometry in tissue-mimicking phantoms to establish its utility for non-invasive temperature monitoring of thermal ablations. Materials and Methods: Three liver mimicking phantoms embedded with temperature sensors were individually scanned with a dual-layer spectral CT at different radiation dose levels during heating and cooling (35 to 80 °C). Physical density maps were reconstructed from spectral results using a range of reconstruction parameters. Thermal volumetric expansion was then measured at each temperature sensor every 5°C in order to establish a correlation between physical density and temperature. Linear regressions were applied based on thermal volumetric expansion for each phantom, and coefficient of variation for fit parameters was calculated to characterize reproducibility of spectral CT thermometry. Additionally, temperature sensitivity was determined to evaluate the effect of acquisition parameters, reconstruction parameters, and image denoising. The resulting minimum radiation dose to meet the clinical temperature sensitivity requirement was determined for each slice thickness, both with and without additional denoising. Results: Thermal volumetric expansion was robustly replicated in all three phantoms, with a correlation coefficient variation of only 0.43%. Similarly, the coefficient of variation for the slope and intercept were 9.6% and 0.08%, respectively, indicating reproducibility of the spectral CT thermometry. Temperature sensitivity ranged from 2 to 23 °C, decreasing with increased radiation dose, slice thickness, and iterative reconstruction level. To meet the clinical requirement for temperature sensitivity, the minimum required radiation dose ranged from 20, 30, and 57 mGy for slice thickness of 2, 3, and 5 mm, respectively, but was reduced to 2 mGy with additional denoising. Conclusions: Spectral CT thermometry demonstrated reproducibility across three liver-mimicking phantoms and illustrated the clinical requirement for temperature sensitivity can be met for different slice thicknesses. Moreover, additional denoising enables the use of more clinically relevant radiation doses, facilitating the clinical translation of spectral CT thermometry. The reproducibility and temperature accuracy of spectral CT thermometry enable its clinical application for non-invasive temperature monitoring of thermal ablation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37854299

RESUMO

Imaging is often a first-line method for diagnostics and treatment. Radiological workflows increasingly mine medical images for quantifiable features. Variability in device/vendor, acquisition protocol, data processing, etc., can dramatically affect quantitative measures, including radiomics. We recently developed a method (PixelPrint) for 3D-printing lifelike computed tomography (CT) lung phantoms, paving the way for future diagnostic imaging standardization. PixelPrint generates phantoms with accurate attenuation profiles and textures by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. The present study introduces a library of 3D printed lung phantoms covering a wide range of lung diseases, including usual interstitial pneumonia with advanced fibrosis, chronic hypersensitivity pneumonitis, secondary tuberculosis, cystic fibrosis, Kaposi sarcoma, and pulmonary edema. CT images of the patient-based phantom are qualitatively comparable to original CT images, both in texture, resolution and contrast levels allowing for clear visualization of even subtle imaging abnormalities. The variety of cases chosen for printing include both benign and malignant pathology causing a variety of alveolar and advanced interstitial abnormalities, both clearly visualized on the phantoms. A comparison of regions of interest revealed differences in attenuation below 6 HU. Identical features on the patient and the phantom have a high degree of geometrical correlation, with differences smaller than the intrinsic spatial resolution of the scans. Using PixelPrint, it is possible to generate CT phantoms that accurately represent different pulmonary diseases and their characteristic imaging features.

8.
Sci Rep ; 13(1): 17495, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37840044

RESUMO

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that possess accurate densities and exhibit visually realistic image textures. These qualities are crucial for evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized calcium-doped filament to increase the Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility, and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in visual texture and contrast. Micro-CT analysis revealed minimal variations between prints, with an overall deviation of ± 0.8% in filament line spacing and ± 0.022 mm in line width. Measured differences between patient and phantom were less than 12 HU for soft tissue and 15 HU for bone marrow, and 514 HU for cortical bone. The calcium-doped filament accurately represented bony tissue structures across different X-ray energies in spectral CT (RMSE ranging from ± 3 to ± 28 HU, compared to 400 mg/ml hydroxyapatite). In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.


Assuntos
Cálcio , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Vértebras Cervicais , Impressão Tridimensional
9.
Sci Rep ; 13(1): 14895, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689744

RESUMO

We evaluate stability of spectral results at different heart rates, acquisition modes, and cardiac phases in first-generation clinical dual-source photon-counting CT (PCCT). A cardiac motion simulator with a coronary stenosis mimicking a 50% eccentric calcium plaque was scanned at five different heart rates (0, 60-100 bpm) with the three available cardiac scan modes (high pitch prospectively ECG-triggered spiral, prospectively ECG-triggered axial, retrospectively ECG-gated spiral). Subsequently, full width half max (FWHM) of the stenosis, Dice score (DSC) for the stenosed region, and eccentricity of the non-stenosed region were calculated for virtual monoenergetic images (VMI) at 50, 70, and 150 keV and iodine density maps at both diastole and systole. FWHM averaged differences of - 0.20, - 0.28, and - 0.15 mm relative to static FWHM at VMI 150 keV across acquisition parameters for high pitch prospectively ECG-triggered spiral, prospectively ECG-triggered axial, and retrospectively ECG-gated spiral scans, respectively. Additionally, there was no effect of heart rate and acquisition mode on FWHM at diastole (p-values < 0.001). DSC demonstrated similarity among parameters with standard deviations of 0.08, 0.09, 0.11, and 0.08 for VMI 50, 70, and 150 keV, and iodine density maps, respectively, with insignificant differences at diastole (p-values < 0.01). Similarly, eccentricity illustrated small differences across heart rate and acquisition mode for each spectral result. Consistency of spectral results at different heart rates and acquisition modes for different cardiac phase demonstrates the added benefit of spectral results from PCCT to dual-source CT to further increase confidence in quantification and advance cardiovascular diagnostics.


Assuntos
Estenose Coronária , Iodo , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Coração/diagnóstico por imagem , Constrição Patológica
10.
ArXiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205269

RESUMO

X-ray phase-contrast imaging offers enhanced sensitivity for weakly-attenuating materials, such as breast and brain tissue, but has yet to be widely implemented clinically due to high coherence requirements and expensive x-ray optics. Speckle-based phase contrast imaging has been proposed as an affordable and simple alternative; however, obtaining high-quality phase-contrast images requires accurate tracking of sample-induced speckle pattern modulations. This study introduced a convolutional neural network to accurately retrieve sub-pixel displacement fields from pairs of reference (i.e., without sample) and sample images for speckle tracking. Speckle patterns were generated utilizing an in-house wave-optical simulation tool. These images were then randomly deformed and attenuated to generate training and testing datasets. The performance of the model was evaluated and compared against conventional speckle tracking algorithms: zero-normalized cross-correlation and unified modulated pattern analysis. We demonstrate improved accuracy (1.7 times better than conventional speckle tracking), bias (2.6 times), and spatial resolution (2.3 times), as well as noise robustness, window size independence, and computational efficiency. In addition, the model was validated with a simulated geometric phantom. Thus, in this study, we propose a novel convolutional-neural-network-based speckle-tracking method with enhanced performance and robustness that offers improved alternative tracking while further expanding the potential applications of speckle-based phase contrast imaging.

11.
Res Sq ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162901

RESUMO

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.

12.
medRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162973

RESUMO

The objective of this study is to create patient-specific phantoms for computed tomography (CT) that have realistic image texture and densities, which are critical in evaluating CT performance in clinical settings. The study builds upon a previously presented 3D printing method (PixelPrint) by incorporating soft tissue and bone structures. We converted patient DICOM images directly into 3D printer instructions using PixelPrint and utilized stone-based filament to increase Hounsfield unit (HU) range. Density was modeled by controlling printing speed according to volumetric filament ratio to emulate attenuation profiles. We designed micro-CT phantoms to demonstrate the reproducibility and to determine mapping between filament ratios and HU values on clinical CT systems. Patient phantoms based on clinical cervical spine and knee examinations were manufactured and scanned with a clinical spectral CT scanner. The CT images of the patient-based phantom closely resembled original CT images in texture and contrast. Measured differences between patient and phantom were less than 15 HU for soft tissue and bone marrow. The stone-based filament accurately represented bony tissue structures across different X-ray energies, as measured by spectral CT. In conclusion, this study demonstrated the possibility of extending 3D-printed patient-based phantoms to soft tissue and bone structures while maintaining accurate organ geometry, image texture, and attenuation profiles.

13.
Quant Imaging Med Surg ; 13(5): 2780-2790, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179937

RESUMO

Background: Bolus tracking can optimize the time delay between contrast injection and diagnostic scan initiation in contrast-enhanced computed tomography (CT), yet the procedure is time-consuming and subject to inter- and intra-operator variances which affect the enhancement levels in diagnostic scans. The objective of the current study is to use artificial intelligence algorithms to fully automate the bolus tracking procedure in contrast-enhanced abdominal CT exams for improved standardization and diagnostic accuracy while providing a simplified imaging workflow. Methods: This retrospective study used abdominal CT exams collected under a dedicated Institutional Review Board (IRB). Input data consisted of CT topograms and images with high heterogeneity in terms of anatomy, sex, cancer pathologies, and imaging artifacts acquired with four different CT scanner models. Our method consisted of two sequential steps: (I) automatic locator scan positioning on topograms, and (II) automatic region-of-interest (ROI) positioning within the aorta on locator scans. The task of locator scan positioning is formulated as a regression problem, where the limited amount of annotated data is circumvented using transfer learning. The task of ROI positioning is formulated as a segmentation problem. Results: Our locator scan positioning network offered improved positional consistency compared to a high degree of variance in manual slice positionings, verifying inter-operator variance as a significant source of error. When trained using expert-user ground-truth labels, the locator scan positioning network achieved a sub-centimeter error (9.76±6.78 mm) on a test dataset. The ROI segmentation network achieved a sub-millimeter absolute error (0.99±0.66 mm) on a test dataset. Conclusions: Locator scan positioning networks offer improved positional consistency compared to manual slice positionings and verified inter-operator variance as an important source of error. By significantly reducing operator-related decisions, this method opens opportunities to standardize and simplify the workflow of bolus tracking procedures for contrast-enhanced CT.

14.
Sci Rep ; 13(1): 6109, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059839

RESUMO

Spectral CT has been increasingly implemented clinically for its better characterization and quantification of materials through its multi-energy results. It also facilitates calculation of physical density, allowing for non-invasive mass measurements and temperature evaluations by manipulating the definition of physical density and thermal volumetric expansion, respectively. To develop spectral physical density quantifications, original and parametrized Alvarez-Macovski model and electron density-physical density model were validated with a phantom. The best physical density model was then implemented on clinical spectral CT scans of ex vivo bovine muscle to determine the accuracy and effect of acquisition parameters on mass measurements. In addition, the relationship between physical density and changes in temperature was evaluated by scanning and subjecting the tissue to a range of temperatures. The parametrized Alvarez-Macovski model performed best in both model development and validation with errors within ± 0.02 g/mL. No effect from acquisition parameters was observed in mass measurements, which demonstrated accuracy with a maximum percent error of 0.34%. Furthermore, physical density was strongly correlated (R of 0.9781) to temperature changes through thermal volumetric expansion. Accurate and precise spectral physical density quantifications enable non-invasive mass measurements for pathological detection and temperature evaluation for thermal therapy monitoring in interventional oncology.


Assuntos
Tomografia Computadorizada por Raios X , Animais , Bovinos , Temperatura , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
15.
PNAS Nexus ; 2(3): pgad026, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909822

RESUMO

In modern clinical decision-support algorithms, heterogeneity in image characteristics due to variations in imaging systems and protocols hinders the development of reproducible quantitative measures including for feature extraction pipelines. With the help of a reader study, we investigate the ability to provide consistent ground-truth targets by using patient-specific 3D-printed lung phantoms. PixelPrint was developed for 3D-printing lifelike computed tomography (CT) lung phantoms by directly translating clinical images into printer instructions that control density on a voxel-by-voxel basis. Data sets of three COVID-19 patients served as input for 3D-printing lung phantoms. Five radiologists rated patient and phantom images for imaging characteristics and diagnostic confidence in a blinded reader study. Effect sizes of evaluating phantom as opposed to patient images were assessed using linear mixed models. Finally, PixelPrint's production reproducibility was evaluated. Images of patients and phantoms had little variation in the estimated mean (0.03-0.29, using a 1-5 scale). When comparing phantom images to patient images, effect size analysis revealed that the difference was within one-third of the inter- and intrareader variabilities. High correspondence between the four phantoms created using the same patient images was demonstrated by PixelPrint's production repeatability tests, with greater similarity scores between high-dose acquisitions of the phantoms than between clinical-dose acquisitions of a single phantom. We demonstrated PixelPrint's ability to produce lifelike CT lung phantoms reliably. These phantoms have the potential to provide ground-truth targets for validating the generalizability of inference-based decision-support algorithms between different health centers and imaging protocols and for optimizing examination protocols with realistic patient-based phantoms. Classification: CT lung phantoms, reader study.

16.
Quant Imaging Med Surg ; 13(2): 924-934, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36819257

RESUMO

Background: To determine the spectral accuracy in detector-based dual-energy CT (DECT) at 100 kVp and wide (8 cm) collimation width for dose levels and object sizes relevant to pediatric imaging. Methods: A spectral CT phantom containing tissue-equivalent materials and iodine inserts of varying concentrations was scanned on the latest generation detector-based DECT system. Two 3D-printed extension rings were used to mimic varying pediatric patient sizes. Scans were performed at 100 and 120 kVp, 4 and 8 cm collimation widths, and progressively reduced radiation dose levels, down to 0.9 mGy CTDIvol. Virtual mono-energetic, iodine density, effective atomic number, and electron density results were quantified and compared to their expected values for all acquisition settings and phantom sizes. Results: DECT scans at 100 kVp provided highly accurate spectral results; however, a size dependence was observed for iodine quantification. For the medium phantom configuration (15 cm diameter), measurement errors in iodine density, effective atomic number, and electron density (ED) were below 0.3 mg/mL, 0.2 and 1.8 %EDwater, respectively. The average accuracy was slightly different from scans at 120 kVp; however, not statistically significant for all configurations. Collimation width had no substantial impact. Spectral results were accurate and reliable for radiation exposures down to 0.9 mGy CTDIvol. Conclusions: Detector-based DECT at 100 kVp can provide on-demand or retrospective spectral information with high accuracy even at extremely low doses, thereby making it an attractive solution for pediatric imaging.

17.
Res Sq ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36711997

RESUMO

Computed tomography (CT) is an extensively used imaging modality capable of generating detailed images of a patient's internal anatomy for diagnostic and interventional procedures. High-resolution volumes are created by measuring and combining information along many radiographic projection angles. In current medical practice, single and dual-view two-dimensional (2D) topograms are utilized for planning the proceeding diagnostic scans and for selecting favorable acquisition parameters, either manually or automatically, as well as for dose modulation calculations. In this study, we develop modified 2D to three-dimensional (3D) encoder-decoder neural network architectures to generate CT-like volumes from single and dual-view topograms. We validate the developed neural networks on synthesized topograms from publicly available thoracic CT datasets. Finally, we assess the viability of the proposed transformational encoder-decoder architecture on both common image similarity metrics and quantitative clinical use case metrics, a first for 2D-to-3D CT reconstruction research. According to our findings, both single-input and dual-input neural networks are able to provide accurate volumetric anatomical estimates. The proposed technology will allow for improved (i) planning of diagnostic CT acquisitions, (ii) input for various dose modulation techniques, and (iii) recommendations for acquisition parameters and/or automatic parameter selection. It may also provide for an accurate attenuation correction map for positron emission tomography (PET) with only a small fraction of the radiation dose utilized.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35664728

RESUMO

Phantoms are essential tools for assessing and verifying performance in computed tomography (CT). Realistic patient-based lung phantoms that accurately represent textures and densities are essential in developing and evaluating novel CT hardware and software. This study introduces PixelPrint, a 3D-printing solution to create patient-specific lung phantoms with accurate contrast and textures. PixelPrint converts patient images directly into printer instructions, where density is modeled as the ratio of filament to voxel volume to emulate local attenuation values. For evaluation of PixelPrint, phantoms based on four COVID-19 pneumonia patients were manufactured and scanned with the original (clinical) CT scanners and protocols. Density and geometrical accuracies between phantom and patient images were evaluated for various anatomical features in the lung, and a radiomic feature comparison was performed for mild, moderate, and severe COVID-19 pneumonia patient-based phantoms. Qualitatively, CT images of the patient-based phantoms closely resemble the original CT images, both in texture and contrast levels, with clearly visible vascular and parenchymal structures. Regions-of-interest (ROIs) comparing attenuation demonstrated differences below 15 HU. Manual size measurements performed by an experienced thoracic radiologist revealed a high degree of geometrical correlation between identical patient and phantom features, with differences smaller than the intrinsic spatial resolution of the images. Radiomic feature analysis revealed high correspondence, with correlations of 0.95-0.99 between patient and phantom images. Our study demonstrates the feasibility of 3D-printed patient-based lung phantoms with accurate geometry, texture, and contrast that will enable protocol optimization, CT research and development advancements, and generation of ground-truth datasets for radiomic evaluations.

19.
Eur Radiol ; 32(12): 8579-8587, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35708838

RESUMO

OBJECTIVE: Evaluation of image characteristics at ultra-low radiation dose levels of a first-generation dual-source photon-counting computed tomography (PCCT) compared to a dual-source dual-energy CT (DECT) scanner. METHODS: A multi-energy CT phantom was imaged with and without an extension ring on both scanners over a range of radiation dose levels (CTDIvol 0.4-15.0 mGy). Scans were performed in different modes of acquisition for PCCT with 120 kVp and DECT with 70/Sn150 kVp and 100/Sn150 kVp. Various tissue inserts were used to characterize the precision and repeatability of Hounsfield units (HUs) on virtual mono-energetic images between 40 and 190 keV. Image noise was additionally investigated at an ultra-low radiation dose to illustrate PCCT's ability to remove electronic background noise. RESULTS: Our results demonstrate the high precision of HU measurements for a wide range of inserts and radiation exposure levels with PCCT. We report high performance for both scanners across a wide range of radiation exposure levels, with PCCT outperforming at low exposures compared to DECT. PCCT scans at the lowest radiation exposures illustrate significant reduction in electronic background noise, with a mean percent reduction of 74% (p value ~ 10-8) compared to DECT 70/Sn150 kVp and 60% (p value ~ 10-6) compared to DECT 100/Sn150 kVp. CONCLUSIONS: This paper reports the first experiences with a clinical dual-source PCCT. PCCT provides reliable HUs without disruption from electronic background noise for a wide range of dose values. Diagnostic benefits are not only for quantification at an ultra-low dose but also for imaging of obese patients. KEY POINTS: PCCT scanners provide precise and reliable Hounsfield units at ultra-low dose levels. The influence of electronic background noise can be removed at ultra-low-dose acquisitions with PCCT. Both spectral platforms have high performance along a wide range of radiation exposure levels, with PCCT outperforming at low radiation exposures.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA