Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Microbiol ; 9(1): 55-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177297

RESUMO

Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.


Assuntos
Bactérias , Ecossistema , Humanos , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Respiração
2.
MethodsX ; 11: 102344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37711139

RESUMO

Bacterial populations in the in vitro laboratory cultures, environment, and patients contain metabolically different subpopulations that respond differently to stress agents, including antibiotics, and emerge as stress tolerant or resistant strains. To contain the emergence of such strains, it is important to study the features of the metabolic status and response of the subpopulations to stress agents. For this purpose, an efficient method is required for the fractionation and isolation of the subpopulations from the cultures. Here we describe in detail the manual setting up of a simple, easy-to-do, reproducibly robust Percoll discontinuous density gradient centrifugation for the fractionation of subpopulations of short-sized cells (SCs) and normal/long-sized cells (NCs) from Mycobacterium smegmatis and Mycobacterium tuberculosis cultures, which we had reported earlier. About 90-98% enrichment was obtained respectively for SCs and NCs for M. smegmatis and 69-67% enrichment was obtained respectively for the SCs and NCs for M. tuberculosis.•The Percoll discontinuous density gradient centrifugation helps the fractionation and isolation of mycobacterial subpopulations that differ in density.•The method offers a consistently reproducible high enrichment of the subpopulations of SCs and NCs from the in vitro cultures of M. smegmatis and M. tuberculosis.•Our earlier reports on the consistency in the differential response of the subpopulations, enriched using the method, to oxidative, nitrite, and antibiotic stress proves its validity.

3.
Cell Chem Biol ; 30(7): 706-708, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37478828

RESUMO

Elevated bloodstream levels of uric acid, a mammalian purine degradation product, are associated with several noncommunicable diseases. Recent studies by Kasahara et al. and Liu et al. define purine-degrading activities of the gut microbiota that lower bloodstream uric acid in atherosclerosis and gout disease models, establishing a novel microbial role in host health.


Assuntos
Microbioma Gastrointestinal , Gota , Animais , Gota/metabolismo , Mamíferos/metabolismo , Purinas/metabolismo , Ácido Úrico/metabolismo
4.
Front Microbiol ; 13: 920117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338044

RESUMO

Bacteria regulate FtsZ protein levels through transcriptional and translational mechanisms for proper cell division. A cis-antisense RNA, StfZ, produced from the ftsA-ftsZ intergenic region, was proposed to regulate FtsZ level in Escherichia coli. However, its structural identity remained unknown. In this study, we determined the complete sequence of StfZ and identified the isoforms and its promoters. We find that under native physiological conditions, StfZ is expressed at a 1:6 ratio of StfZ:ftsZ mRNA at all growth phases from three promoters as three isoforms of 366, 474, and 552 nt RNAs. Overexpression of StfZ reduces FtsZ protein level, increases cell length, and blocks cell division without affecting the ftsZ mRNA stability. We did not find differential expression of StfZ under the stress conditions of heat shock, cold shock, or oxidative stress, or at any growth phase. These data indicated that the cis-encoded StfZ antisense RNA to ftsZ mRNA may be involved in the fine tuning of ftsZ mRNA levels available for translation as per the growth-phase-specific requirement at all phases of growth and cell division.

5.
Curr Res Microb Sci ; 3: 100148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909613

RESUMO

Exposure to antibiotics most often generates oxidative stress in bacteria. Oxidative stress survival mechanisms would facilitate the evolution of antibiotic resistance. As part of an effort to understand oxidative stress survival mechanisms in mycobacteria, here we show that the minor subpopulation (SCs; short-sized cells constituting 10% of the population) of Mycobacterium smegmatis significantly increased the survival of its major kin subpopulation (NCs; normal/long-sized cells constituting 90% of the population) in the mid-log-phase (MLP) cultures against the oxidative stress induced by rifampicin and exogenously added H2O2 (positive control). We had earlier shown that the SCs in the MLP cultures inherently and naturally release significantly high levels of H2O2 into the medium. Addition of the SCs' culture supernatant, unlike the supernatant of the dimethylthiourea (H2O2 scavenger) exposed SCs, enhanced the survival of NCs. It indicated that NCs' survival required the H2O2 present in the SCs' supernatant. This H2O2 transcriptionally induced high levels of catalase-peroxidase (KatG) in the NCs. The naturally high KatG levels in the NCs significantly neutralised the endogenous H2O2 formed upon exposure to rifampicin or H2O2, thereby enhancing the survival of NCs against oxidative stress. The absence of such enhanced survival in the furA-katG and katG knockout (KO) mutants of NCs in the presence of wild-type SCs, confirmed the requirement of the H2O2 present in the SCs' supernatant and NCs' KatG for enhanced oxidative stress survival. The presence of SCs:NCs at 1:9 in the pulmonary tuberculosis patients' sputum alludes to the clinical significance of the finding.

6.
Biol Chem ; 403(4): 433-443, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35218689

RESUMO

Penicillin-binding proteins (PBPs) are integral to bacterial cell division as they mediate the final steps of cell wall maturation. Selective fluorescent probes are useful for understanding the role of individual PBPs, including their localization and activity during growth and division of bacteria. For the development of new selective probes for PBP imaging, several ß-lactam antibiotics were screened, as they are known to covalently bind PBP in vivo. The PBP inhibition profiles of 16 commercially available ß-lactam antibiotics were evaluated in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae, IU1945. These ß-lactams have not previously been characterized for their PBP inhibition profiles in S. pneumoniae and these data augment those obtained from a library of 20 compounds that we previously reported. We investigated seven penicillins, three carbapenems, and six cephalosporins. Most of these ß-lactams were found to be co-selective for PBP2x and PBP3, as was noted in our previous studies. Six out of 16 antibiotics were selective for PBP3 and one molecule was co-selective for PBP1a and PBP3. Overall, this work expands the chemical space available for development of future ß-lactam-based probes for specific pneumococcal PBP labeling and these methods can be used for the development of probes for PBP labelling in other bacterial species.


Assuntos
Streptococcus pneumoniae , beta-Lactamas , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Lactamas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
7.
mSphere ; 5(6)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208519

RESUMO

The emergence of antibiotic genetic resisters of pathogenic bacteria poses a major public health challenge. The mechanism by which bacterial antibiotic genetic resister clones formed de novo multiply and establish a resister population remained unknown. Here, we delineated the unique mode of cell division of the antibiotic genetic resisters of Mycobacterium smegmatis and Mycobacterium tuberculosis formed de novo from the population surviving in the presence of bactericidal concentrations of rifampicin or moxifloxacin. The cells in the rifampicin/moxifloxacin-surviving population generated elevated levels of hydroxyl radical-inflicting mutations. The genetic mutants selected against rifampicin/moxifloxacin became multinucleated and multiseptated and developed multiple constrictions. These cells stochastically divided multiple times, producing sister-daughter cells phenomenally higher in number than what could be expected from their generation time. This caused an abrupt, unexpectedly high increase in the rifampicin/moxifloxacin resister colonies. This unique cell division behavior was not shown by the rifampicin resisters formed naturally in the actively growing cultures. We could detect such abrupt increases in the antibiotic resisters in others' and our earlier data on the antibiotic-exposed laboratory/clinical M. tuberculosis strains, M. smegmatis and other bacteria in in vitro cultures, infected macrophages/animals, and tuberculosis patients. However, it went unnoticed/unreported in all those studies. This phenomenon occurring in diverse bacteria surviving against different antibiotics revealed the broad significance of the present study. We speculate that the antibiotic-resistant bacillary clones, which emerge in patients with diverse bacterial infections, might be using the same mechanism to establish an antibiotic resister population quickly in the continued presence of antibiotics.IMPORTANCE The bacterial pathogens that are tolerant to antibiotics and survive in the continued presence of antibiotics have the chance to acquire genetically resistant mutations against the antibiotics and emerge de novo as antibiotic resisters. Once the antibiotic resister clone has emerged, often with compromise on growth characteristics, for the protection of the species, it is important to establish an antibiotic-resistant population quickly in the continued presence of the antibiotic. In this regard, the present study has unraveled multinucleation and multiseptation followed by multiple constrictions as the cellular processes used by the bacteria for quick multiplication to establish antibiotic-resistant populations. The study also points out the same phenomenon occurring in other bacterial systems investigated in our laboratory and others' laboratories. Identification of these specific cellular events involved in quick multiplication offers additional cellular processes that can be targeted in combination with the existing antibiotics' targets to preempt the emergence of antibiotic-resistant bacterial strains.


Assuntos
Antibióticos Antituberculose/farmacologia , Divisão Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas de Bactérias/genética , Tolerância a Medicamentos , Moxifloxacina/farmacologia , Mutação , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Rifampina/farmacologia
8.
Front Microbiol ; 10: 1842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456773

RESUMO

Antibiotic-exposed bacteria produce elevated levels of reactive oxygen species (ROS), to which either they succumb or get mutated genome-wide to generate antibiotic resisters. We recently showed that mycobacterial cultures contained two subpopulations, short-sized cells (SCs; ∼10%) and normal/long-sized cells (NCs; ∼90%). The SCs were significantly more antibiotic-susceptible than the NCs. It implied that the SCs might naturally be predisposed to generate significantly higher levels of ROS than the NCs. This in turn could make the SCs more susceptible to antibiotics or generate more resisters as compared to the NCs. Investigation into this possibility showed that the SCs in the actively growing mid-log phase culture naturally generated significantly high levels of superoxide, as compared to the equivalent NCs, due to the naturally high expression of a specific NADH oxidase in the SCs. This caused labile Fe2+ leaching from 4Fe-4S proteins and elevated H2O2 formation through superoxide dismutation. Thus, the SCs of both Mycobacterium smegmatis and Mycobacterium tuberculosis inherently contained significantly higher levels of H2O2 and labile Fe2+ than the NCs. This in turn produced significantly higher levels of hydroxyl radical through Fenton reaction, promoting enhanced antibiotic resister generation from the SCs than from the NCs. The SCs, when mixed back with the NCs, at their natural proportion in the actively growing mid-log phase culture, enhanced antibiotic resister generation from the NCs, to a level equivalent to that from the unfractionated whole culture. The enhanced antibiotic resister generation from the NCs in the reconstituted SCs-NCs natural mixture was found to be due to the high levels of H2O2 secreted by the SCs. Thus, the present work unveils and documents the metabolic designs of two mycobacterial subpopulations where one subpopulation produces high ROS levels, despite higher susceptibility, to generate significantly higher number of antibiotic resisters from itself and to enhance resister generation from its kin subpopulation. These findings show the existence of an inherent natural mechanism in both the non-pathogenic and pathogenic mycobacteria to generate antibiotic resisters. The presence of the SCs and the NCs in the pulmonary tuberculosis patients' sputum, reported by us earlier, alludes to the clinical significance of the study.

9.
Microbiology (Reading) ; 165(6): 668-682, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31091187

RESUMO

Phenotypically heterogeneous but genetically identical mycobacterial subpopulations exist in in vitro cultures, in vitro-infected macrophages, infected animal models and tuberculosis patients. In this regard, we recently reported the presence of two subpopulations of cells, which are phenotypically different in length and buoyant density, in mycobacterial cultures. These are the low-buoyant-density short-sized cells (SCs), which constitute ~10-20 % of the population, and the high-buoyant-density normal/long-sized cells (NCs), which form ~80-90 % of the population. The SCs were found to be significantly more susceptible to rifampicin (RIF), isoniazid (INH), H2O2 and acidified nitrite than the NCs. Here we report that the RIF-/INH-/H2O2-exposed SCs showed significantly higher levels of oxidative stress and therefore higher susceptibility than the equivalent number of exposed NCs. Significantly higher levels of hydroxyl radical and superoxide were found in the antibiotic-exposed SCs than in the equivalently exposed NCs. Different proportions of the subpopulation of SCs were found to have different levels of reactive oxygen species (ROS). The hydroxyl radical quencher, thiourea, and the superoxide dismutase mimic, TEMPOL, significantly reduced hydroxyl radical and superoxide levels, respectively, in the antibiotic-exposed SCs and NCs and thereby decreased their differential susceptibility to antibiotics. Thus, the present study shows that the heterogeneity of the reactive oxygen species (ROS) levels in these mycobacterial subpopulations confers differential susceptibility to antibiotics. We have discussed the possible mechanisms that can generate differential ROS levels in the antibiotic-exposed SCs and NCs. The present study advances our current understanding of the molecular mechanisms underlying antibiotic tolerance in mycobacteria.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxidos N-Cíclicos/farmacologia , Peróxido de Hidrogênio/farmacologia , Radical Hidroxila/metabolismo , Isoniazida/metabolismo , Isoniazida/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Modelos Biológicos , Mycobacterium smegmatis/genética , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Rifampina/metabolismo , Rifampina/farmacologia , Marcadores de Spin , Superóxidos/metabolismo , Tioureia/farmacologia
10.
ACS Chem Biol ; 13(6): 1447-1454, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29757604

RESUMO

Diadenosine polyphosphates, Ap(2-7)A, which contain two adenosines in a 5',5' linkage through phosphodiester bonds involving 2-7 phosphates, regulate diverse cellular functions in all organisms, from bacteria to humans, under normal and stress conditions. We had earlier reported consistent occurrence of asymmetric constriction during division (ACD) in 20-30% of dividing mycobacterial cells in culture, irrespective of different growth media, implying exogenous action of some factor of mycobacterial origin. Consistent with this premise, concentrated culture supernatant (CCS), but not the equivalent volume-wise concentrated unused medium, dramatically enhanced the ACD proportion to 70-90%. Mass spectrometry and biochemical analyses of the bioactive fraction from CCS revealed the ACD-effecting factor to be Ap6A. Synthetic Ap6A showed a mass spectrometry profile, biochemical characteristics, and bioactivity identical to native Ap6A in the CCS. Thus, the present work reveals a novel role for Ap6A in generating cell-length asymmetry during mycobacterial cell-division and thereby cell-length heterogeneity in the population.


Assuntos
Divisão Celular/efeitos dos fármacos , Fosfatos de Dinucleosídeos/metabolismo , Mycobacterium/citologia , Mycobacterium/metabolismo , Fosfatos de Dinucleosídeos/isolamento & purificação , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/metabolismo
11.
Front Microbiol ; 8: 463, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377757

RESUMO

The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA