Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol J ; 19(1): e2300350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135869

RESUMO

A novel approach for in situ transesterification, extraction, separation, and purification of fatty acid ethyl esters (FAEE) for biodiesel and docosahexaenoic acid (DHA) from Thraustochytrid biomass has been developed. The downstream processing of Thraustochytrids oil necessitates optimization, considering the higher content of polyunsaturated fatty acids (PUFA). While two-step methods are commonly employed for extracting and transesterifying oil from oleaginous microbes, this may result in oxidation/epoxidation of omega-3 oil due to prolonged exposure to heat and oxygen. To address this issue, a rapid single-step method was devised for in situ transesterification of Thraustochytrid oil. Through further process optimization, a 50% reduction in solvent requirement was achieved without significantly impacting fatty acid recovery or composition. Scale-up studies in a 4 L reactor demonstrated complete FAEE recovery (99.98% of total oil) from biomass, concurrently enhancing DHA yield from 16% to nearly 22%. The decolorization of FAEE oil with fuller's earth effectively removed impurities such as pigments, secondary metabolites, and waxes, resulting in a clear, shiny appearance. High-performance liquid chromatography (HPLC) analysis indicated that the eluted DHA was over 94.5% pure, as corroborated by GC-FID analysis.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Ácidos Docosa-Hexaenoicos/química , Biocombustíveis , Biomassa , Ácidos Graxos/química , Ácidos Graxos Ômega-3/química , Ésteres/metabolismo
2.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38150724

RESUMO

The coherent perfect absorption (CPA) occurring in the graphene sheet suspended in air can be utilized to develop an ultrathin, ultra-broadband absorber working in the frequency range from a few hertz (Hz) to terahertz (THz) with perfect absorption. A graphene sheet is studied to induce the CPA to cover radio, microwave and lower THz frequency ranges. A graphene resonator able to provide the surface plasmon resonance (SPR) is combined with the graphene sheet to provide CPA at either side of a thin dielectric layer forms metamaterial structure with the cavity and enhances the absorption bandwidth in the THz region by creating a resonance near quasi-CPA frequency. A dielectric silicon resonator is embedded in the structure, which creates dipolar resonances between the resonances obtained by the formed cavity between the graphene sheet and resonator. This enhances the absorption level in the THz region. The absorption bandwidth is further enhanced to 7 THz by including a graphene disc at the top of the silicon resonator. Thus, the multiple multi-order resonances occurring in the silicon dielectric and SPR of graphene resonators are merged with the phenomena of CPA occurring in the graphene sheets to extend the CPA bandwidth in the THz regime. The doping level of graphene or its tunable Fermi energy based on the applied DC electric field provides the tunability in the total obtained absorption bandwidth. The symmetric structure provides polarization-insensitive behavior with an allowed incident angle of more than 45° with more than 90% absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA