Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Curr Hypertens Rev ; 20(1): 23-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192137

RESUMO

BACKGROUND: Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE: This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS: 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS: Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION: The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.


Assuntos
Acetatos , Ciclopropanos , Demência Vascular , Modelos Animais de Doenças , Endotélio Vascular , Hipertensão Renovascular , Antagonistas de Leucotrienos , Estresse Oxidativo , Quinolinas , Receptores de Leucotrienos , Sulfetos , Animais , Acetatos/farmacologia , Quinolinas/farmacologia , Masculino , Demência Vascular/fisiopatologia , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Demência Vascular/psicologia , Antagonistas de Leucotrienos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Hipertensão Renovascular/fisiopatologia , Hipertensão Renovascular/tratamento farmacológico , Hipertensão Renovascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Receptores de Leucotrienos/metabolismo , Mediadores da Inflamação/metabolismo , Cognição/efeitos dos fármacos , Ratos Wistar , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Ratos , Aprendizagem em Labirinto/efeitos dos fármacos
2.
Basic Clin Neurosci ; 14(2): 247-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107532

RESUMO

Introduction: A neurodevelopmental disorder, autism is typically identified with three primary behavioral consequences, such as social impairment, communication problems, and limited or stereotypical behavior. Because of its co-morbidity and lack of therapeutic options, autism is a global economic burden. A short chain of fatty acid, propionic acid is formed biologically by the gut microbiome. Propionic acid levels that are too high can cause leaky intestines, which can lead to autism-like symptoms. Methods: To induce autism, male Albino Wistar rats were given propionic acid (250 mg/kg/po on the 21st, 22nd, and 23rd postnatal days). Rats also received a ryanodine receptor antagonist (Ruthenium red: 3 mg/kg/po; postnatal 21st to 50th day) to see what influence it had on propionic acid-induced autism. Anxiety, social behavior, and repeated behaviors were all assessed, as well as oxidative stress, inflammatory indicators, neuro signaling proteins, and blood-brain barrier permeability. Results: Ruthenium red was found to counter the propionic acid-induced increases in anxiety, repetitive behavior prefrontal cortex levels of IL-6, TNF-α, TBARS, Evans blue leakage, and water content along with decreases in social behavior, IL-10, and GSH followed by hippocampus CREB and BDNF levels. Conclusion: Ryanodine receptor antagonists presented a neuroprotective effect in propionic acid-induced conditions like autism by modulatory effects on social and repetitive behavior, oxidative stress, neuroinflammation, and neuroprotein changes. Ryanodine receptors can be further explored in depth to manage autism as a condition. Highlights: Ruthenium red can reduce the propionic acid-induced anxiety of rats with autism.Ruthenium red can improve the propionic acid-induced changes in repetitive behavior of rats with autism.Ruthenium red can reduce the propionic acid-induced social behavior dysfunction in rats with autism. Plain Language Summary: Autism is a complex heterogeneous neurodevelopmental disorder mainly diagnosed with social behavior dysfunction, communication problems, and repetitive behavior. Due to high comorbidity and multiple unknown factors involvement, its exact etiology remains unclear, and so no successful treatment is available. Among the environmentally produced models of autism in rats, the most common is created by propionic acid (PPA). With short-chain type fatty acid, PPA is one of the mediators for the cycle of cell metabolism. This study attempted to study the effect of a ryano-dine receptor antagonist (Ruthenium red) on PPA-induced Anxiety, social behavior dysfunction, and repeated behaviors in rats with autism. The results showed the modulatory effects of Ruthenium red PPA-induced conditions including social and repetitive behavior, oxidative stress, neuroinflammation, and neuroprotein changes in rats with autism.

3.
Mol Cell Neurosci ; 127: 103905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972804

RESUMO

Neuron navigators are microtubule plus-end tracking proteins containing basic and serine rich regions which are encoded by neuron navigator genes (NAVs). Neuron navigator proteins are essential for neurite outgrowth, neuronal migration, and overall neurodevelopment along with some other functions as well. The navigator proteins are substantially expressed in the developing brain and have been reported to be differentially expressed in various tissues at different ages. Over the years, the research has found neuron navigators to be implicated in a spectrum of pathological conditions such as developmental anomalies, neurodegenerative disorders, neuropathic pain, anxiety, cancers, and certain inflammatory conditions. The existing knowledge about neuron navigators remains sparse owing to their differential functions, undiscovered modulators, and unknown molecular mechanisms. Investigating the possible role of neuron navigators in various physiological processes and pathological conditions pose as a novel field that requires extensive research and might provide novel mechanistic insights and understanding of these aspects.


Assuntos
Microtúbulos , Neurônios , Neurônios/metabolismo , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Movimento Celular/fisiologia
4.
Org Biomol Chem ; 21(36): 7267-7289, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37655687

RESUMO

Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.

5.
ACS Omega ; 8(6): 6099-6123, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816646

RESUMO

A library of 57 compounds of natural andrographolide was designed, synthesized, and screened for in vitro studies against four human cancer cell lines: A594, PC-3, MCF-7, and HCT-116. Most of the synthesized compounds displayed better cytotoxic profile against all tested cells compared to the parent andrographolide (1). The tested semisynthetic derivatives of andrographolide were found to be more sensitive toward lung carcinoma (A594) and prostate carcinoma (PC-3) cell lines. Among the synthesized compounds, the C-17 p-methoxy phenyl ester analog 8s inhibited cell proliferation effectively in A549 (IC50: 6.6 µM) and PC-3 (IC50: 5.9 µM) cell variants, and compound 9s exhibited the most potent activity against the A594 cell line, with an IC50 value of 3.5 µM. Further anticancer mechanistic investigation demonstrated that compound 9s displayed nuclear morphological changes and increased reactive oxygen species (ROS) with disturbed mitochondrial membrane potential (MMP) that can lead to apoptosis. To know the exact structure confirmation of intermediate compounds 4 and 5, single X-ray crystallography was performed, which supported the complete reaction design of this work.

6.
J Basic Clin Physiol Pharmacol ; 34(5): 603-615, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161695

RESUMO

OBJECTIVES: Vascular dementia (VaD), being strongly associated with metabolic conditions is a major health concern around the world. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of quercetin and folacin in diabetes induced vascular endothelium dysfunction and related dementia. METHODS: Single dose streptozotocin (STZ) (50 mg/kg i.p) was administered to albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), mitochondrial enzyme complex (I, II, and IV), inflammatory markers (interleukin-IL-6, IL-10, tumor necrosis factor-TNF-α, and myeloperoxidase-MPO), and acetylcholinesterase activity-AChE were also assessed. Quercetin (30 mg kg-1/60 mg kg-1) and folacin (30 mg kg-1/60 mg kg-1) were used as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. RESULTS: STZ administered rats showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress; inflammation; AChE activity, and decrease in mitochondrial complex (I, II, and IV) activity. Administration of quercetin and folacin in two different doses, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, and biochemical parameters. CONCLUSIONS: STZ administration caused diabetes and VaD which was attenuated by the administration of quercetin and folacin. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD conditions.

7.
Clin Psychopharmacol Neurosci ; 20(4): 725-736, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36263647

RESUMO

Objective: Present study was designed to investigate behavioral and biochemical role of nimodipine in prenatal valproic acid (Pre-VPA) induced autism in rats. Methods: Valproic acid was utilized to induce autistic phenotypes in Wistar rats. The rats were assessed for social behavior. Hippocampus and prefrontal cortex (PFC) were utilized for various biochemical assessments, whereas cerebellum was used to assess blood brain barrier (BBB) permeability. Results: Pre-VPA rats showed reduction social interaction. Pre-VPA administration were decreased PFC levels of interleukin- 10 (IL-10), and glutathione along with hippocampus cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF). Also, the animals have shown increase in PFC levels of IL-6, tumor necrosis factor-α, thiobarbituric acid reactive substance, Evans blue leakage and water content. Nimodipine countered Pre-VPA administered reduction in social interaction, CREB, BDNF, inflammation, oxidative stress, BBB permeability. Conclusion: Pre-VPA has induced autistic phenotype, which were attenuated by nimodipine in rats. Nimodipine and other calcium channel blockers should further investigate to check the management of autism.

8.
Alcohol ; 105: 25-34, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35995260

RESUMO

Prenatal alcohol exposure (PAE) has been shown to induce symptomatology associated with attention deficit hyperactivity disorder (ADHD) by altering neurodevelopmental trajectories. Phosphodiesterase-1 (PDE1) is expressed centrally and has been used in various experimental brain conditions. We investigated the role of vinpocetine, a PDE1 inhibitor, on behavioral phenotypes and important biochemical deficits associated with a PAE rat model of ADHD. Protein markers of cerebral health (synapsin-IIa, BDNF, and pCREB), inflammation (IL-6, IL-10, and TNF-α), and oxidative stress (TBARS, GSH, and SOD) were analyzed in three brain regions (frontal cortex, striatum, and cerebellum). Hyperactivity, inattention, and anxiety introduced in the offspring due to PAE were assayed using open-field, Y-maze, and elevated plus maze, respectively. Administration of vinpocetine (10 & 20 mg/kg, p.o. [by mouth]) to PAE rat offspring for 4 weeks resulted in improvement of the behavioral profile of the animals. Additionally, levels of protein markers such as synapsin-IIa, BDNF, pCREB, IL-10, SOD, and GSH were found to be significantly increased, with a significant reduction in markers such as TNF-α, IL-6, and TBARS in selected brain regions of vinpocetine-treated animals. Vinpocetine, a selective PDE1 inhibitor, rectified behavioral phenotypes associated with ADHD, possibly by improving cerebral function, reducing brain inflammation, and reducing brain oxidative stress. This study provides preliminary analysis and suggests that the PDE1 enzyme may be an important pharmacological tool to study ADHD as a result of PAE.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Etanol , Efeitos Tardios da Exposição Pré-Natal , Alcaloides de Vinca , Animais , Feminino , Humanos , Gravidez , Ratos , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Interleucina-10 , Interleucina-6 , Estresse Oxidativo , Diester Fosfórico Hidrolases , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fator de Necrose Tumoral alfa , Etanol/efeitos adversos , Alcaloides de Vinca/farmacologia
9.
Acta Neurobiol Exp (Wars) ; 82(1): 35-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451422

RESUMO

Hyperserotonemia, during the early developmental phase, generates behavioral and biochemical phenotypes associated with autism spectrum disorder (ASD) in rats. Phosphodiesterase­1 (PDE1) inhibitors are known to provide benefits in various brain conditions. We investigated the role of a selective PDE1 inhibitor, vinpocetine on ASD­related behavioral phenotypes (social behavioral deficits, repetitive behavior, anxiety, and hyperlocomotion) in a developmental hyperserotonemia (DHS) rat model. Also, effects on biochemical markers related with neuronal function brain derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (pCREB), inflammation interleukins (IL­6 and IL­10) and tumor necrosis factor-alpha (TNF­α), and oxidative stress (TBARS and GSH) were studied in important brain areas (frontal cortex, cerebellum, hippocampus, and striatum). Administration of 5­methoxytryptamine (5­MT) to rats prenatally (gestational day 12) and in early developmental stages postnatal day (PND 0 - PND 20), resulted in impaired behavior and brain biochemistry. Administration of vinpocetine daily (10 and 20 mg/kg) to 5­MT rats from PND 21 to PND 48 resulted in an improvement of behavioral deficits. Also, vinpocetine administration significantly increased the levels of BDNF, ratio of pCREB/ CREB, IL­10, and GSH, and significantly decreased TNF­α, IL­6, and TBARS levels in different brain areas. Finally, our correlation analysis indicated that behavioral outcomes were significantly associated with the biochemical outcome. Vinpocetine, a selective PDE1 inhibitor, rectified important behavioral phenotypes related with ASD, possibly by improving markers of neuronal function, brain inflammation, and brain oxidative stress. Thus, PDE1 could be a potential target for pharmacological interventions and furthering our understanding of ASD pathogenesis.


Assuntos
Transtorno do Espectro Autista , Animais , Biomarcadores , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Inflamação/tratamento farmacológico , Interleucina-10/efeitos adversos , Interleucina-6 , Estresse Oxidativo , Inibidores de Fosfodiesterase/efeitos adversos , Ratos , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico , Fator de Necrose Tumoral alfa/efeitos adversos , Alcaloides de Vinca
10.
Pharmacol Rep ; 74(3): 481-492, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35396697

RESUMO

BACKGROUND: Vascular dementia is the second most prevalent form of dementia. Hypertension is the leading risk factor for endothelial dysfunction and the progression of dementia that is of vascular origin. This study investigates the role of ulinastatin (UTI) and quercetin alone as well as in combination in hypertension-induced endothelial dysfunction and vascular dementia (VaD). METHOD: Two-kidney one-clip (2K1C) renovascular model was set up to induce hypertension in the Albino Wistar rats (males). Rats were assessed for mean arterial blood pressure, behavioral function (Morris water maze, attention set-shifting tests), vascular endothelial function, and biochemical levels (aortic superoxide anion and serum nitrite/nitrate), as well as brains' thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, interleukin-6, 10, tumor necrosis factor-TNF-α and acetylcholinesterase-AChE). UTI (10,000 U/kg, ip) and quercetin (60 mg/kg) were used alone and in combination for treatment. Donepezil (0.5 mg/kg) was used as a positive control. RESULTS: 2K1C rats showed impairment in learning, memory, executive functioning, and reversal learning. These rats further showed endothelial dysfunction as well as an increase in mean arterial blood pressure, brains' oxidative stress, inflammation, and AChE-activity. Treatment with UTI and quercetin alone as well in combination significantly attenuated the 2K1C model induced impairments in the behavioural, biochemical, and endothelial parameters. CONCLUSION: 2K1C renovascular hypertension-induced impairment in behavioural, biochemical, and endothelial parameters were attenuated by the treatment with UTI and quercetin alone as well as in combination. Therefore, the utility of these agents might be studied further to understand their full potential in hypertension-induced VaD.


Assuntos
Demência Vascular , Hipertensão , Acetilcolinesterase/metabolismo , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/etiologia , Glicoproteínas , Hipertensão/induzido quimicamente , Masculino , Aprendizagem em Labirinto , Estresse Oxidativo , Quercetina/farmacologia , Ratos
11.
Physiol Behav ; 249: 113767, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245527

RESUMO

Metabolic conditions like diabetes, is a major risk factor for the development of dementia of vascular origin. This study investigates the efficacy of atomoxetine (ATX) and N-acetylcysteine (NAC) in streptozotocin (STZ) diabetes induced vascular endothelium dysfunction and related dementia. Single dose STZ (50 mg/kg i.p) was administered to Albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests (ASST) were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE and histopathological changes were also assessed. Atomoxetine - ATX (2 mg kg-1/ 4 mg kg-1) and N-acetylcysteine- NAC (250 mg kg-1/ 500 mg kg-1) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. STZ administered rats showed increase in serum glucose levels and decrease in body weight. Rats administered with STZ also showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress, inflammation, AChE activity and histopathological changes. Administration of ATX and NAC in two different doses as well as in combination, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, biochemical parameters and histopathological changes. Co-treatment of ATX and NAC was better in comparison to the doses when given alone. Hence, STZ administration caused diabetes induced dementia of vascular origin which was attenuated by the administration of ATX and NAC. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced dementia of vascular origin conditions.


Assuntos
Demência Vascular , Diabetes Mellitus Experimental , Acetilcolinesterase/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/uso terapêutico , Peso Corporal , Encéfalo/metabolismo , Demência Vascular/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Masculino , Aprendizagem em Labirinto , Estresse Oxidativo , Ratos , Estreptozocina/toxicidade
12.
J Pharm Pharmacol ; 73(11): 1460-1469, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34459916

RESUMO

OBJECTIVES: Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder, presenting with a variety of aetiological and phenotypical features. Inhibiting the enzyme phosphodiesterase-3 (PDE3) with cilostazol is known to produce beneficial effects in several brain disorders. The pharmacological outcome of cilostazol administration was investigated in prenatal valproic acid (VPA)-induced ASD deficits in albino Wistar rats. METHODS: Cilostazol was administered in two doses (30/60 mg/kg) to male rats born of females administered with VPA on gestational day 12. Behavioural assays on locomotion (open field), social interaction, repetitive behaviour (y-maze) and anxiety (elevated plus maze) were performed in all groups. Further, biochemical assessments of markers associated with neuronal function (BDNF, pCREB), inflammation (TNF-α, IL-6, IL-10) and oxidative stress were carried out in frontal cortex, hippocampus, striatum and cerebellum. KEY FINDINGS: The cilostazol regimen, attenuated prenatal VPA exposure associated hyperlocomotion, social interaction deficits, repetitive behavior, and anxiety. Further, biochemical markers such as BDNF, pCREB, IL-10 and GSH were found to be significantly increased contrary to markers such as TNF-α, IL-6 and TBARS in the assessed brain regions. CONCLUSIONS: Cilostazol rectified core behavioural traits while producing significant changes to biochemistry in the brain, suggesting benefits of cilostazol administration in experimental models of ASD.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cilostazol/uso terapêutico , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Anticonvulsivantes/efeitos adversos , Ansiedade/prevenção & controle , Transtorno do Espectro Autista/induzido quimicamente , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cilostazol/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/prevenção & controle , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Ratos Wistar , Comportamento Social , Ácido Valproico/efeitos adversos
13.
Autism Res ; 14(11): 2270-2286, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34415116

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex etiology and phenotypes. Phosphodiesterase-1 (PDE1) inhibitors are known to provide benefits in various brain conditions manifesting similar behavioral phenotypes. The pharmacological consequences of vinpocetine administration a PDE1 inhibitor in prenatal-valproic acid (pre-VPA) induced ASD related behavioral phenotypes (social behavior deficits, repetitive behavior, anxiety, hyperlocomotion, and nociception) was assessed. Also, effects on important biochemical markers of neuronal function (DCX-neurogenesis, BDNF-neuronal survival, synapsin-IIa-synaptic transmission, pCREB-neuronal transcription factor), inflammation (interleukin [IL]-6, IL-10, and TNF-α) and oxidative stress (thiobarbituric acid reactive substance [TBARS] and glutathione (GSH) were studied in important brain areas (frontal cortex, cerebral cortex, hippocampus, and striatum). Further, neuronal cell viability was determined in dentate gyrus using Nissl staining. Pre-VPA administration resulted into impaired behavior, brain biochemistry, and neuronal cell viability. Administration of vinpocetine resulted in improvements of pre-VPA impaired social behavior, repetitive behavior, anxiety, locomotion, and nociception. Also, vinpocetine resulted in a significant increase in the levels of BDNF, synapsin-IIa, DCX, pCREB/CREB, IL-10, and GSH along with significant decrease in TNF-α, IL-6, TBARS, number of pyknotic and chromatolytic cells in different brain areas of pre-VPA group. Finally, high association between behavioral parameters and biochemical parameters was observed upon Pearson's correlation analysis. Vinpocetine, a PDE1 inhibitor rectified important behavioral phenotypes related with ASD, possibly by improving neuronal function, brain inflammation and brain oxidative stress. Thus, PDE1 may be a possible target for further understanding ASD. LAY SUMMARY: ASD is a brain developmental disorder with a wide array of genetic and environmental factors. Many targets have been identified till date, but a clinical treatment is still afar. The results of this study indicate that vinpocetine administration resulted in amelioration of ASD associated symptomatology in rats, prenatally exposed to VPA. Our research adds a widely expressed brain enzyme PDE1, as a possible novel pharmacological target and opens-up a new line of enquiry for ASD treatment.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal , Biomarcadores , Modelos Animais de Doenças , Proteína Duplacortina , Feminino , Inflamação , Estresse Oxidativo , Gravidez , Ratos , Ratos Wistar , Ácido Valproico , Alcaloides de Vinca
14.
Clin Psychopharmacol Neurosci ; 19(3): 470-489, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34294616

RESUMO

OBJECTIVE: Vascular Dementia (VaD), is associated with metabolic conditions. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of ulinastatin (UTI) and sulforaphane (SUL) in streptozotocin (STZ)-diabetes induced vascular endothelium dysfunction and related dementia. METHODS: Single dose STZ (50 mg/kg i.p.) was administered to Albino Wistar rats (male, 200-250 g). Morris water maze and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, blood brain barrier (BBB) permeability and histopathological changes were also assessed. UTI (10,000 U/kg) and SUL (25 mg/kg) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg/kg) was used as a positive control. RESULTS: STZ-administered rats showed reduction in body weight, learning, memory, reversal learning, executive functioning, impairment in endothelial function, BBB permeability, increase in serum glucose, brains' oxidative stress, inflammation, AChE-activity, BBB permeability and histopathological changes. Administration of UTI and SUL alone as well as in combination, significantly and dose dependently attenuated the STZ-diabetes-induced impairments in the behavioral, endothelial, and biochemical parameters. CONCLUSION: STZ administration caused diabetes and VaD which was attenuated by the administration of UTI and SUL. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD.

15.
Front Chem ; 9: 580118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981670

RESUMO

Nanotechnology has made a great impact on the pharmaceutical, biotechnology, food, and cosmetics industries. More than 40% of the approved drugs are lipophilic and have poor solubility. This is the major rate-limiting step that influences the release profile and bioavailability of drugs. Several approaches have been reported to administer lipophilic drugs with improved solubility and bioavailability. Nanotechnology plays a crucial role in the targeted delivery of poorly soluble drugs. Nanotechnology-based drug delivery systems can be classified as solid lipid nanoparticulate drug delivery systems, emulsion-based nanodrug delivery systems, vesicular drug delivery systems, etc. Nanotechnology presents a new frontier in research and development to conquer the limitations coupled with the conventional drug delivery systems through the formation of specific functionalized particles. This review presents a bird's eye view on various aspects of lipid nanoparticles as carriers of bioactive molecules that is, synthesis, characterization, advantage, disadvantage, toxicity, and application in the medical field. Update on recent development in terms of patents and clinical trials of solid lipid nanoparticles (SLNs) and nanostructure lipid carriers (NLCs) have also been discussed in this article.

16.
Clin Exp Pharmacol Physiol ; 48(4): 614-625, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480092

RESUMO

Hyperserotonemia, in the early developmental phase, generates a variety of behavioural and biochemical phenotypes associated with autism spectrum disorder (ASD) in rats. Papaverine is known to provide benefits in various brain conditions. We investigated the role of a selective phosphodiesterase-10A (PDE10A) inhibitor, papaverine on ASD related behavioural phenotypes (social behaviour deficits, repetitive behaviour, anxiety and hyperlocomotion) in developmental hyperserotonemia (DHS) rat model. Also, effects on important biochemical markers related with neuronal function (brain-derived neurotrophic factor (BDNF)-neuronal survival and phosphorylated-cAMP response element binding protein (pCREB)-neuronal transcription factor), brain inflammation (interleukin (IL)-6, IL-10 and tumour necrosis factor (TNF)-α) and brain oxidative stress (TBARS and GSH) were studied in important brain areas (frontal cortex, cerebellum, hippocampus and striatum). Administration of a non-selective serotonin receptor agonist, such as 5-methoxytryptamine (5-MT) to rats prenatally (gestational day 12 - day of parturition) and during early stages (postnatal day (PND) 0 -PND20) of development, resulted in impaired behaviour and brain biochemistry. Administration of papaverine (15/30 mg/kg ip) to 5-MT administered rats from PND21 to PND48, resulted in improvement of behavioural deficits. Also, papaverine administration significantly increased the levels of BDNF, pCREB/CREB, IL-10, GSH and significantly decreased TNF-α, IL-6 and TBARS levels in different brain areas. Papaverine, in both doses rectified important behavioural phenotypes related with ASD, the higher dose (30 mg/kg ip) showed significantly greater improvement than 15 mg/kg ip, possibly by improving neuronal function, brain inflammation and brain oxidative stress. Thus, PDE10A could be a probable target for pharmacological interventions and furthering our understanding of ASD pathogenesis.


Assuntos
Transtorno do Espectro Autista , Papaverina , Animais , Comportamento Animal/efeitos dos fármacos , Neurônios , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Ratos
17.
Int J Dev Neurosci ; 81(1): 71-81, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33175424

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with complex aetiology and phenotypes. Phosphodiesterase10A (PDE10A) has been shown to provide benefits in various brain conditions. We investigated the role of papaverine, a selective PDE10A inhibitor on core phenotypes in prenatal alcohol exposure (PAE) model of ADHD. In order to identify probable mechanisms involved, the effects on several protein markers of neuronal function such as, neuronal survival-BDNF, neuronal transcription factor-pCREB, brain inflammation (IL-6, IL-10, and TNF-α), and brain oxidative stress (TBARS and GSH) were studied in frontal cortex, cerebellum, and striatum. PAE resulting hyper-locomotion, inattention, and anxiety were studied by the use of open-field, y-maze, and elevated plus maze, respectively. Administration of papaverine (15/30 mg kg-1 ) to PAE group of animals resulted in amelioration of hyperactivity, inattention, and anxiety. Also, papaverine resulted in significant increase of the levels in BDNF, pCREB, IL-10, and GSH along with significant decrease of TNF-α, IL-6, and TBARS in different brain areas of PAE group. Papaverine, a selective PDE10A inhibitor rectified behavioural phenotypes associated with ADHD, possibly by altering the protein markers associated with neuronal survival, neuronal transcription factor, brain inflammation, and brain oxidative stress. Implicating PDE10A as a possible target for furthering our understanding of ADHD phenotypes.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Encefalite/tratamento farmacológico , Transtornos do Espectro Alcoólico Fetal/tratamento farmacológico , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Papaverina/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Animais , Ansiedade/psicologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Comportamento Animal , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Transtornos do Espectro Alcoólico Fetal/psicologia , Aprendizagem em Labirinto , Atividade Motora , Neurônios/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar
18.
Eur J Pharmacol ; 890: 173663, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33127361

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex aetiology and phenotypes. Phosphodiesterase-10A (PDE10A) inhibition has shown to provide benefits in various brain conditions. We investigated the role of a PDE10A inhibitor, papaverine on core phenotypes in prenatal-valproic acid (Pre-VPA) model of ASD. In order to identify probable mechanisms involved, the effects on several protein markers of neuronal function such as, neurogenesis-DCX, neuronal survival-BDNF, synaptic transmission-synapsin-IIa, neuronal transcription factor-pCREB, neuronal inflammation (IL-6, IL-10 and TNF-α) and neuronal oxidative stress (TBARS and GSH) were studied in frontal cortex, cerebellum, hippocampus and striatum. Pre-VPA induced impairments in social behaviour, presence of repetitive behaviour, hyper-locomotion, anxiety, and diminished nociception were studied in male Albino Wistar rats. Administration of papaverine to Pre-VPA animals resulted in improvements of social behaviour, corrected repetitive behaviour, anxiety, locomotor, and nociceptive changes. Also, papaverine resulted in a significant increase in the levels of BDNF, synapsin-IIa, DCX, pCREB, IL-10 and GSH along with significant decrease in TNF-α, IL-6 and TBARS in different brain areas of Pre-VPA group. Finally, high association between behavioural parameters and biochemical parameters was observed upon Pearson's correlation analysis. Papaverine, administration rectified core behavioural phenotype of ASD, possibly by altering protein markers associated with neuronal survival, neurogenesis, neuronal transcription factor, neuronal transmission, neuronal inflammation, and neuronal oxidative stress. Implicating PDE10A as a possible target for furthering our understanding of ASD phenotypes.


Assuntos
Transtorno do Espectro Autista/prevenção & controle , Papaverina/uso terapêutico , Inibidores de Fosfodiesterase/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Interação Social/efeitos dos fármacos , Ácido Valproico/toxicidade , Animais , Anticonvulsivantes/toxicidade , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/psicologia , Relação Dose-Resposta a Droga , Proteína Duplacortina , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Papaverina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos , Ratos Wistar
19.
Curr Neurovasc Res ; 17(5): 686-699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33319685

RESUMO

BACKGROUND: Stroke is associated with cerebral ischemia/reperfusion (I/R) injury. Ischemic postconditioning (IPoC) reduces cerebral ischemic injury in rats and offers neuroprotection. The central histaminergic pathway possesses a crucial role in the pathogenesis of cerebral I/R, but its neuroprotective role in IPoC is still unidentified. OBJECTIVE: This research explored the role of the histaminergic in IPoC during cerebral I/R injury in the rat. METHODS: Global cerebral ischemia/reperfusion (GCI/R) injury in Wistar albino rats was induced by occluding the bilateral carotid arteries for 10 minutes, followed by reperfusion. IPoC was provided by giving three episodes of I/R post GCI (10 min), after which of reperfusion was permitted. Inclined- beam-walk, hanging-wire, lateral-push, and rota-rod tests were employed to assess motor functions, and Morris water maze (MWM) was used to assess spatial learning as well as memory in animals. Cerebral oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione- GSH), inflammatory markers (myeloperoxidase-MPO), acetylcholinesterase activity- AChE, infarct size, and histopathological changes were also assessed. L-histidine and chlorpheniramine were used as histaminergic agonists and antagonists. RESULTS: I/R animals showed a reduction in memory and motor function, and an increase in cerebral oxidative stress, inflammation, AChE activity, infarct size and histopathological changes. Episodes of IPoC post-ischemia attenuated the deleterious effects of I/R injury. Pretreatment (30 min before cerebral ischemia) with L-histidine mimicked the neuroprotective effects of IPoC. However, neuroprotection produced by IPoC was abolished by pretreatment with chlorpheniramine (histaminergic- H1 receptor antagonist). CONCLUSION: IPoC may provide neuroprotection against cerebral I/R induced brain injury by modulating the histaminergic-H1-receptor pathway.


Assuntos
Isquemia Encefálica/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Pós-Condicionamento Isquêmico/métodos , Fármacos Neuroprotetores/uso terapêutico , Receptores Histamínicos H1/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Acetilcolinesterase/metabolismo , Animais , Clorfeniramina/farmacologia , Glutationa/metabolismo , Antagonistas dos Receptores Histamínicos H1/farmacologia , Histidina/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Navegação Espacial/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Brain Res ; 1748: 147116, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32919985

RESUMO

Ischemic stroke is a medical condition that arises because of poor blood supply to the brain. Reperfusion being salvage to the brain further causes, exacerbation of tissue injury, known as reperfusion injury. Ischemic preconditioning (IPC) has been known to provide benefits against ischemia reperfusion (I/R) injury. Dopamine D2/D3 receptor mediated several pathways are also reported as mediators in the IPC mediated neuroprotection. This study investigates the possible involvement of D2/D3 receptor activation in IPC mediated neuroprotection in the I/R brain. Global cerebral ischemia/reperfusion (GCI/R) injury in swiss albino mice was induced by occluding the common carotid arteries for 17 min, followed by 24 h reperfusion. IPC was provided by giving 3 episodes of I/R prior to Ischemia (17 min). Morris water maze (MWM) was used to assess the spatial learning, memory and Rota rod, lateral push test as well as inclined beam test were conducted to assess the motor functions in animals. Cerebral oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, infarct size (% weight and % volume), and histopathological changes were also assessed. Haloperidol (0.05 mg/kg, i.p) was used to antagonize the effects of D2/D3 receptor activation. I/R animals showed reduction in memory, motor function, increase in cerebral oxidative stress, inflammation, AChE activity, infarct size and histopathological changes. Episodes of IPC prior to ischemia, attenuated the deleterious effects of I/R injury. Administration of haloperidol abolished the protective effects of IPC. Hence, it may be concluded that IPC mediated neuroprotection may involves dopamine D2/D3 receptor activation in mice.


Assuntos
Isquemia Encefálica/metabolismo , Antagonistas de Dopamina/farmacologia , Precondicionamento Isquêmico/métodos , Aprendizagem em Labirinto/efeitos dos fármacos , Neuroproteção/fisiologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Animais , Citocinas/metabolismo , Haloperidol/farmacologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA