RESUMO
Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes. First, biochar supports habitats for microorganisms due to its porous nature and by promoting the formation of stable soil micro-aggregates. Biochar also serves as a carbon and nutrient source. Biochar alters soil physical and chemical properties, creating optimum soil conditions for microbial diversity. Biochar can also immobilize soil pollutants and reduce their bioavailability that would otherwise inhibit microbial growth. However, depending on the pyrolysis settings and feedstock resources, biochar can be comprised of contaminants including polycyclic aromatic hydrocarbons and potentially toxic elements that can inhibit microbial activity, thereby impacting soil health.
Assuntos
Poluentes do Solo , Solo , Solo/química , Carvão Vegetal/química , Carbono , Poluição Ambiental , Poluentes do Solo/químicaRESUMO
Application of crop residues and biochar have been demonstrated to improve soil biological and chemical properties in agroecosystems. However, the integrated effect of organic amendments and hydrological cycles on soil health indicators are not well understood. In this study, we quantified the impact of hemp residue (HR), hemp biochar (HB), and hardwood biochar (HA) on five hydrolytic enzymes, soil microbial phospholipid (PLFA) community structure, pH, permanganate oxidizable carbon (POXC) soil organic carbon (SOC), and total nitrogen (TN). We compared two soil types, Piedmont and Coastal Plain soils of North Carolina, under (i) a 30-d moisture cycle maintained at 60% water-filled pore space (WFPS) (D-W1), followed by (ii) a 7-day alternate dry-wet cycle for 42 days (D-W2), or (iii) maintained at 60% WFPS for 42 days (D-W3) during an aerobic laboratory incubation. Results showed that HR and HB significantly increased the geometric mean enzyme activity by 1-2-fold in the Piedmont soil under the three moisture cycles and about 1.5-fold under D-W in the Coastal soil. In the presence of HA, the measured soil enzyme activities were significantly lower than control under the moisture cycles in both soil types. The shift in microbial community structure was distinct in the Coastal soil but not in the Piedmont soil. Under D-W2, HR and HB significantly increased POXC (600-700 mg POXC kg-1 soil) in the Coastal soil but not in the Piedmont soil while HA increased nitrate (8 mg kg-1) retention in the Coastal soil. The differences in amendment effect on pH SOC, TN, POXC, and nitrate were less distinct in the fine-textured Piedmont soil than the coarse-textured Coastal soil. Overall, the results indicate that, unlike HA, HR and HB will have beneficial effects on soil health and productivity, therefore potentially improving soil's resilience to changing climate.
Assuntos
Carvão VegetalRESUMO
Amaranth (Amaranthus spp.) is an increasingly high-valued niche vegetable crop among small organic growers in North Carolina, due to its increasing demand among diverse immigrant groups. Production is however hampered by insect pests such as the flea beetle (FB), Disonycha glabrata (Coleoptera: Chrysomelidae), that cause significant yield reduction. Chemical insecticides are generally applied for pest control despite their known risks to health and the environment. Integrated pest management (IPM), which is a cost effective and environmentally friendly approach is still under-exploited in vegetable production by small growers. We studied IPM approaches, suitable for organic production of amaranth by screening nine amaranth varieties for resistance to the flea beetle (FB), D. glabrata, grown with, and without, mulch. D. glabrata population was 60% higher in plots with mulch compared to plots without. The amaranth varieties Molten fire and Green Callaloo recorded the lowest and the highest beetle population commensurate with low, and high leaf damage, respectively. Conversely, leaf yields in the mulched plots were 50% less than recorded in the zero-mulch counterpart, with Green Callaloo variety recording the lowest. These findings will serve as building blocks for a sustainable pest management plan that is appropriate for organic production of Amaranthus spp. in North Carolina.