Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(31): 14844-14852, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39034676

RESUMO

Silver and gold nanoclusters are promising nanomaterials for various applications such as sensing, catalysis, and bioimaging. However, their synthetic control and repeatability, and determination of their structures are highly complicated. Only a handful of crystal structures of silver nanoclusters (AgNCs) have been reported, while structures of a few others have been reported with the help of mass spectrometry. We synthesized two AgNCs, viz., Ag-MBTNC (Ag16 cluster) and Ag-MBINC (Ag18 cluster) respectively stabilized by 2-mercaptobenzothiazole (2-MBT) and 2-mercaptobenzimidazole (2-MBI) with excellent repeatability; determined their composition and plausible structures using XPS, TGA and MALDI-TOF mass spectrometry; and compared their optical properties. Interestingly, Ag-MBTNC is fluorescent while Ag-MBINC is not, although these are synthesized using stabilizing ligands that have difference in only one atom. The structural features of the clusters are found to be similar but they have contrasting optical behaviours due to the effect of one S atom (in 2-MBT) in place of one N atom (in 2-MBI).

2.
Phys Chem Chem Phys ; 26(10): 8115-8124, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38410934

RESUMO

The nature of the bonding between a neutral group 12 member (Zn3, Cd3 and Hg3) ring and a noble gas atom was explored using quantum chemical simulations. Natural bond orbital, quantum theory of atoms in molecules, symmetry-adapted perturbation theory, and molecular electrostatic potential surface analysis were also used to investigate the type of interaction between the noble gas atom and the metal rings (Zn3, Cd3 and Hg3). The Zn3, Cd3 and Hg3 rings are bonded to the noble gas through non-covalent interactions, which was revealed by the non-covalent interaction index. Additionally, energy decomposition analysis reveals that dispersion energy is the key factor in stabilizing these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA