Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916040

RESUMO

Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, reconstruct organismal relationships with high statistical confidence. But, inferred relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.


Assuntos
Genômica , Filogenia , Animais , Genômica/métodos , Modelos Genéticos , Evolução Molecular , Plantas/genética , Fungos/genética
2.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746095

RESUMO

Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, infer organismal relationships with high statistical confidence. But, these relationships can be sensitive to excluding just a few sequences. Currently, there is no direct way to identify fragile relationships and the associated individual gene sequences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and animal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, substitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.

3.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38124397

RESUMO

An individual's chronological age does not always correspond to the health of different tissues in their body, especially in cases of disease. Therefore, estimating and contrasting the physiological age of tissues with an individual's chronological age may be a useful tool to diagnose disease and its progression. In this study, we present novel metrics to quantify the loss of phylogenetic diversity in hematopoietic stem cells (HSCs), which are precursors to most blood cell types and are associated with many blood-related diseases. These metrics showed an excellent correspondence with an age-related increase in blood cancer incidence, enabling a model to estimate the phylogeny-derived age (phyloAge) of HSCs present in an individual. The HSC phyloAge was generally older than the chronological age of patients suffering from myeloproliferative neoplasms (MPNs). We present a model that relates excess HSC aging with increased MPN risk. It predicted an over 200 times greater risk based on the HSC phylogenies of the youngest MPN patients analyzed. Our new metrics are designed to be robust to sampling biases and do not rely on prior knowledge of driver mutations or physiological assessments. Consequently, they complement conventional biomarker-based methods to estimate physiological age and disease risk.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Filogenia , Células-Tronco Hematopoéticas/metabolismo , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Envelhecimento
4.
Front Bioinform ; 3: 1225807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600967

RESUMO

A common practice in molecular systematics is to infer phylogeny and then scale it to time by using a relaxed clock method and calibrations. This sequential analysis practice ignores the effect of phylogenetic uncertainty on divergence time estimates and their confidence/credibility intervals. An alternative is to infer phylogeny and times jointly to incorporate phylogenetic errors into molecular dating. We compared the performance of these two alternatives in reconstructing evolutionary timetrees using computer-simulated and empirical datasets. We found sequential and joint analyses to produce similar divergence times and phylogenetic relationships, except for some nodes in particular cases. The joint inference performed better when the phylogeny was not well resolved, situations in which the joint inference should be preferred. However, joint inference can be infeasible for large datasets because available Bayesian methods are computationally burdensome. We present an alternative approach for joint inference that combines the bag of little bootstraps, maximum likelihood, and RelTime approaches for simultaneously inferring evolutionary relationships, divergence times, and confidence intervals, incorporating phylogeny uncertainty. The new method alleviates the high computational burden imposed by Bayesian methods while achieving a similar result.

5.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36306418

RESUMO

The selection of the optimal substitution model of molecular evolution imposes a high computational burden for long sequence alignments in phylogenomics. We discovered that the analysis of multiple tiny subsamples of site patterns from a full sequence alignment recovers the correct optimal substitution model when sites in the subsample are upsampled to match the total number of sites in the full alignment. The computational costs of maximum-likelihood analyses are reduced by orders of magnitude in the subsample-upsample (SU) approach because the upsampled alignment contains only a small fraction of all site patterns. We present an adaptive protocol, ModelTamer, that implements the new SU approach and automatically selects subsamples to estimate optimal models reliably. ModelTamer selects models hundreds to thousands of times faster than the full data analysis while needing megabytes rather than gigabytes of computer memory.


Assuntos
Evolução Molecular , Modelos Genéticos , Filogenia , Alinhamento de Sequência
6.
Nat Comput Sci ; 1(9): 573-577, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34734192

RESUMO

Felsenstein's bootstrap approach is widely used to assess confidence in species relationships inferred from multiple sequence alignments. It resamples sites randomly with replacement to build alignment replicates of the same size as the original alignment and infers a phylogeny from each replicate dataset. The proportion of phylogenies recovering the same grouping of species is its bootstrap confidence limit. But, standard bootstrap imposes a high computational burden in applications involving long sequence alignments. Here, we introduce the bag of little bootstraps approach to phylogenetics, bootstrapping only a few little samples, each containing a small subset of sites. We report that the median bagging of bootstrap confidence limits from little samples produces confidence in inferred species relationships similar to standard bootstrap but in a fraction of computational time and memory. Therefore, the little bootstraps approach can potentially enhance the rigor, efficiency, and parallelization of big data phylogenomic analyses.

7.
Mol Biol Evol ; 38(11): 4674-4682, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34343318

RESUMO

We introduce a supervised machine learning approach with sparsity constraints for phylogenomics, referred to as evolutionary sparse learning (ESL). ESL builds models with genomic loci-such as genes, proteins, genomic segments, and positions-as parameters. Using the Least Absolute Shrinkage and Selection Operator, ESL selects only the most important genomic loci to explain a given phylogenetic hypothesis or presence/absence of a trait. ESL models do not directly involve conventional parameters such as rates of substitutions between nucleotides, rate variation among positions, and phylogeny branch lengths. Instead, ESL directly employs the concordance of variation across sequences in an alignment with the evolutionary hypothesis of interest. ESL provides a natural way to combine different molecular and nonmolecular data types and incorporate biological and functional annotations of genomic loci in model building. We propose positional, gene, function, and hypothesis sparsity scores, illustrate their use through an example, and suggest several applications of ESL. The ESL framework has the potential to drive the development of a new class of computational methods that will complement traditional approaches in evolutionary genomics, particularly for identifying influential loci and sequences given a phylogeny and building models to test hypotheses. ESL's fast computational times and small memory footprint will also help democratize big data analytics and improve scientific rigor in phylogenomics.


Assuntos
Genoma , Genômica , Filogenia
8.
Mol Biol Evol ; 38(8): 3046-3059, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33942847

RESUMO

Global sequencing of genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to reveal new genetic variants that are the key to unraveling its early evolutionary history and tracking its global spread over time. Here we present the heretofore cryptic mutational history and spatiotemporal dynamics of SARS-CoV-2 from an analysis of thousands of high-quality genomes. We report the likely most recent common ancestor of SARS-CoV-2, reconstructed through a novel application and advancement of computational methods initially developed to infer the mutational history of tumor cells in a patient. This progenitor genome differs from genomes of the first coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections. However, multiple coronavirus infections in China and the United States harbored the progenitor genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide months before and after the first reported cases of COVID-19 in China. Mutations of the progenitor and its offshoots have produced many dominant coronavirus strains that have spread episodically over time. Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated North America for most of the pandemic in 2020. There have been multiple replacements of predominant coronavirus strains in Europe and Asia as well as continued presence of multiple high-frequency strains in Asia and North America. We have developed a continually updating dashboard of global evolution and spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).


Assuntos
COVID-19/genética , SARS-CoV-2/genética , Evolução Biológica , COVID-19/metabolismo , Biologia Computacional/métodos , Busca de Comunicante/métodos , Evolução Molecular , Genoma Viral , Humanos , Mutação , Pandemias , Filogenia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Análise de Sequência de DNA/métodos
9.
bioRxiv ; 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-32995781

RESUMO

We report the likely most recent common ancestor of SARS-CoV-2 - the coronavirus that causes COVID-19. This progenitor SARS-CoV-2 genome was recovered through a novel application and advancement of computational methods initially developed to reconstruct the mutational history of tumor cells in a patient. The progenitor differs from the earliest coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections. However, multiple coronavirus infections in China and the USA harbored the progenitor genetic fingerprint in January 2020 and later, suggesting that the progenitor was spreading worldwide as soon as weeks after the first reported cases of COVID-19. Mutations of the progenitor and its offshoots have produced many dominant coronavirus strains, which have spread episodically over time. Fingerprinting based on common mutations reveals that the same coronavirus lineage has dominated North America for most of the pandemic. There have been multiple replacements of predominant coronavirus strains in Europe and Asia and the continued presence of multiple high-frequency strains in Asia and North America. We provide a continually updating dashboard of global evolution and spatiotemporal trends of SARS-CoV-2 spread (http://sars2evo.datamonkey.org/).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA