Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(1): e0088323, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38018964

RESUMO

There is frequent evidence that Limosilactobacillus vaginalis colonizes female genitourinary tracts but few reports of Limosilactobacillus portuensis. Their role in urinary tract infection (UTI) is unclear. We present the first complete genome of L. portuensis and a complete genome of L. vaginalis isolated from postmenopausal women with varying UTI histories.

2.
mBio ; : e0251523, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962362

RESUMO

IMPORTANCE: Urinary tract infection (UTI) is a global health issue that imposes a substantial burden on healthcare systems. Women are disproportionately affected by UTI, with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis, a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may be involved in E. faecalis survival in the urinary tract.

3.
Access Microbiol ; 5(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424546

RESUMO

Enterococcus raffinosus is an understudied member of its genus possessing a characteristic megaplasmid contributing to a large genome size. Although less commonly associated with human infection compared to other enterococci, this species can cause disease and persist in diverse niches such as the gut, urinary tract, blood and environment. Few complete genome assemblies have been published to date for E. raffinosus . In this study, we report the complete assembly of the first clinical urinary E. raffinosus strain, Er676, isolated from a postmenopausal woman with history of recurrent urinary tract infection. We additionally completed the assembly of clinical type strain ATCC49464. Comparative genomic analyses reveal inter-species diversity driven by large accessory genomes. The presence of a conserved megaplasmid indicates it is a ubiquitous and vital genetic feature of E. raffinosus . We find that the E. raffinosus chromosome is enriched for DNA replication and protein biosynthesis genes while the megaplasmid is enriched for transcription and carbohydrate metabolism genes. Prophage analysis suggests that diversity in the chromosome and megaplasmid sequences arises, in part, from horizontal gene transfer. Er676 demonstrated the largest genome size reported to date for E. raffinosus and the highest probability of human pathogenicity. Er676 also possesses multiple antimicrobial resistance genes, of which all but one are encoded on the chromosome, and has the most complete prophage sequences. Complete assembly and comparative analyses of the Er676 and ATCC49464 genomes provide important insight into the inter-species diversity of E. raffinosus that gives it its ability to colonize and persist in the human body. Investigating genetic factors that contribute to the pathogenicity of this species will provide valuable tools to combat diseases caused by this opportunistic pathogen.

4.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37293065

RESUMO

Enterococcus faecalis is the leading Gram-positive bacterial species implicated in urinary tract infection (UTI). An opportunistic pathogen, E. faecalis is a commensal of the human gastrointestinal tract (GIT) and its presence in the GIT is a predisposing factor for UTI. The mechanisms by which E. faecalis colonizes and survives in the urinary tract (UT) are poorly understood, especially in uncomplicated or recurrent UTI. The UT is distinct from the GIT and is characterized by a sparse nutrient landscape and unique environmental stressors. In this study, we isolated and sequenced a collection of 37 clinical E. faecalis strains from the urine of primarily postmenopausal women. We generated 33 closed genome assemblies and four highly contiguous draft assemblies and conducted a comparative genomics to identify genetic features enriched in urinary E. faecalis with respect to E. faecalis isolated from the human GIT and blood. Phylogenetic analysis revealed high diversity among urinary strains and a closer relatedness between urine and gut isolates than blood isolates. Plasmid replicon (rep) typing further underscored possible UT-GIT interconnection identifying nine shared rep types between urine and gut E. faecalis . Both genotypic and phenotypic analysis of antimicrobial resistance among urinary E. faecalis revealed infrequent resistance to front-line UTI antibiotics nitrofurantoin and fluoroquinolones and no vancomycin resistance. Finally, we identified 19 candidate genes enriched among urinary strains that may play a role in adaptation to the UT. These genes are involved in the core processes of sugar transport, cobalamin import, glucose metabolism, and post-transcriptional regulation of gene expression. IMPORTANCE: Urinary tract infection (UTI) is a global health issue that imposes substantial burden on healthcare systems. Women are disproportionately affected by UTI with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis , a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may mediate urinary E. faecalis adaptation to the female urinary tract.

5.
Cell Rep Med ; 3(10): 100753, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36182683

RESUMO

Postmenopausal women are severely affected by recurrent urinary tract infection (rUTI). The urogenital microbiome is a key component of the urinary environment. However, changes in the urogenital microbiome underlying rUTI susceptibility are unknown. Here, we perform shotgun metagenomics and advanced culture on urine from a controlled cohort of postmenopausal women to identify urogenital microbiome compositional and function changes linked to rUTI susceptibility. We identify candidate taxonomic biomarkers of rUTI susceptibility in postmenopausal women and an enrichment of lactobacilli in postmenopausal women taking estrogen hormone therapy. We find robust correlations between Bifidobacterium and Lactobacillus and urinary estrogens in women without urinary tract infection (UTI) history. Functional analyses reveal distinct metabolic and antimicrobial resistance gene (ARG) signatures associated with rUTI. Importantly, we find that ARGs are enriched in the urogenital microbiomes of women with rUTI history independent of current UTI status. Our data suggest that rUTI and estrogen shape the urogenital microbiome in postmenopausal women.


Assuntos
Anti-Infecciosos , Microbiota , Infecções Urinárias , Feminino , Humanos , Pós-Menopausa , Infecções Urinárias/tratamento farmacológico , Estrogênios , Microbiota/genética , Lactobacillus
6.
Microbiol Resour Announc ; 11(9): e0048122, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938830

RESUMO

Lactobacillus gasseri frequently colonizes the lower urinary tract of healthy women. However, the role of L. gasseri in urinary tract health and the genes required for urinary tract colonization are poorly understood. Herein, we announce the complete genome sequences of three Lactobacillus gasseri isolates collected from the urine of postmenopausal women.

7.
Microbiol Resour Announc ; 10(48): e0101721, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854711

RESUMO

Lactobacillus crispatus frequently colonizes the vagina and bladder of healthy women. Although its association with vaginal health is relatively well understood, little is known about its role in urinary tract infection (UTI). Here, we report the complete genome sequences of three urinary L. crispatus strains isolated from women with different UTI histories.

8.
J Vis Exp ; (174)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34487123

RESUMO

Complete genome sequences provide valuable data for the understanding of genetic diversity and unique colonization factors of urinary microbes. These data may include mobile genetic elements, such as plasmids and extrachromosomal phage, that contribute to the dissemination of antimicrobial resistance and further complicate treatment of urinary tract infection (UTI). In addition to providing fine resolution of genome structure, complete, closed genomes allow for the detailed comparative genomics and evolutionary analyses. The generation of complete genomes de novo has long been a challenging task due to limitations of available sequencing technology. Paired-end Next Generation Sequencing (NGS) produces high quality short reads often resulting in accurate but fragmented genome assemblies. On the contrary, Nanopore sequencing provides long reads of lower quality normally leading to error-prone complete assemblies. Such errors may hamper genome-wide association studies or provide misleading variant analysis results. Therefore, hybrid approaches combining both short and long reads have emerged as reliable methods to achieve highly accurate closed bacterial genomes. Reported herein is a comprehensive method for the culture of diverse urinary bacteria, species identification by 16S rRNA gene sequencing, extraction of genomic DNA (gDNA), and generation of short and long reads by NGS and Nanopore platforms, respectively. Additionally, this method describes a bioinformatic pipeline of quality control, assembly, and gene prediction algorithms for the generation of annotated complete genome sequences. Combination of bioinformatic tools enables the selection of high quality read data for hybrid genome assembly and downstream analysis. The streamlined approach for the hybrid de novo genome assembly described in this protocol may be adapted for the use in any culturable bacteria.


Assuntos
Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/genética , Genoma Bacteriano/genética , RNA Ribossômico 16S , Análise de Sequência de DNA , Tecnologia
9.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958485

RESUMO

Urinary tract infection (UTI) is one of the most common adult bacterial infections and exhibits high recurrence rates, especially in postmenopausal women. Studies in mouse models suggest that cyclooxygenase-2 (COX-2)-mediated inflammation sensitizes the bladder to recurrent UTI (rUTI). However, COX-2-mediated inflammation has not been robustly studied in human rUTI. We used human cohorts to assess urothelial COX-2 production and evaluate its product, PGE2, as a biomarker for rUTI in postmenopausal women. We found that the percentage of COX-2-positive cells was elevated in inflamed versus uninflamed bladder regions. We analyzed the performance of urinary PGE2 as a biomarker for rUTI in a controlled cohort of 92 postmenopausal women and PGE2 consistently outperformed all other tested clinical variables as a predictor of rUTI status. Furthermore, time-to-relapse analysis indicated that the risk of rUTI relapse was 3.6 times higher in women with above median urinary PGE2 levels than with below median levels. Taken together, these data suggest that urinary PGE2 may be a clinically useful diagnostic and prognostic biomarker for rUTI in postmenopausal women.


Assuntos
Dinoprostona/análise , Dinoprostona/urina , Infecções Urinárias/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/urina , Estudos de Coortes , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/urina , Feminino , Humanos , Inflamação , Pessoa de Meia-Idade , Pós-Menopausa , Recidiva , Fatores de Risco , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia
10.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737357

RESUMO

Recurrent urinary tract infection (rUTI) poses a major health issue, especially among postmenopausal women. We report complete genome sequences of three Klebsiella quasipneumoniae strains isolated from the urine of postmenopausal women with rUTI. K. quasipneumoniae is a recently identified Klebsiella species with clinical and virulence characteristics distinct from those of K. pneumoniae.

11.
Microbiol Resour Announc ; 9(33)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32817150

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infection (UTI). This disease disproportionately affects women and frequently develops into recurrent UTI (rUTI) in postmenopausal women. Here, we report the complete genome sequences of seven UPEC isolates obtained from the urine of postmenopausal women with rUTI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA