RESUMO
Africa's Middle Stone Age preserves sporadic evidence for novel behaviours among early modern humans, prompting a range of questions about the influence of social and environmental factors on patterns of human behavioural evolution. Here we document a suite of novel adaptations dating approximately 92-80 thousand years before the present at the archaeological site Varsche Rivier 003 (VR003), located in southern Africa's arid Succulent Karoo biome. Distinctive innovations include the production of ostrich eggshell artefacts, long-distance transportation of marine molluscs and systematic use of heat shatter in stone tool production, none of which occur in coeval assemblages at sites in more humid, well-studied regions immediately to the south. The appearance of these novelties at VR003 corresponds with a period of reduced regional wind strength and enhanced summer rainfall, and all of them disappear with increasing winter rainfall dominance after 80 thousand years before the present, following which a pattern of technological similarity emerges at sites throughout the broader region. The results indicate complex and environmentally contingent processes of innovation and cultural transmission in southern Africa during the Middle Stone Age.
Assuntos
Hominidae , Adaptação Fisiológica , África Austral , Animais , Arqueologia/métodos , Casca de Ovo , HumanosRESUMO
The Halibee member of the Upper Dawaitoli Formation of Ethiopia's Middle Awash study area features a wealth of Middle and Later Stone Age (MSA and LSA) paleoanthropological resources in a succession of Pleistocene sediments. We introduce these artifacts and fossils, and determine their chronostratigraphic placement via a combination of established radioisotopic methods and a recently developed dating method applied to ostrich eggshell (OES). We apply the recently developed 230Th/U burial dating of OES to bridge the temporal gap between radiocarbon (14C) and 40Ar/39Ar ages for the MSA and provide 14C ages to constrain the younger LSA archaeology and fauna to â¼24 to 21.4 ka. Paired 14C and 230Th/U burial ages of OES agree at â¼31 ka for an older LSA locality, validating the newer method, and in turn supporting its application to stratigraphically underlying MSA occurrences previously constrained only by a maximum 40Ar/39Ar age. Associated fauna, flora, and Homo sapiens fossils are thereby now fixed between 106 ± 20 ka and 96.4 ± 1.6 ka (all errors 2σ). Additional 40Ar/39 results on an underlying tuff refine its age to 158.1 ± 11.0 ka, providing a more precise minimum age for MSA lithic artifacts, fauna, and H. sapiens fossils recovered â¼9 m below it. These results demonstrate how chronological control can be obtained in tectonically active and stratigraphically complex settings to precisely calibrate crucial evidence of technological, environmental, and evolutionary changes during the African Middle and Late Pleistocene.
RESUMO
Modern human behavioral innovations from the Middle Stone Age (MSA) include the earliest indicators of full coastal adaptation evidenced by shell middens, yet many MSA middens remain poorly dated. We apply 230Th/U burial dating to ostrich eggshells (OES) from Ysterfontein 1 (YFT1, Western Cape, South Africa), a stratified MSA shell midden. 230Th/U burial ages of YFT1 OES are relatively precise (median ± 2.7%), consistent with other age constraints, and preserve stratigraphic principles. Bayesian age-depth modeling indicates YFT1 was deposited between 119.9 to 113.1 thousand years ago (ka) (95% CI of model ages), and the entire 3.8 m thick midden may have accumulated within â¼2,300 y. Stable carbon, nitrogen, and oxygen isotopes of OES indicate that during occupation the local environment was dominated by C3 vegetation and was initially significantly wetter than at present but became drier and cooler with time. Integrating archaeological evidence with OES 230Th/U ages and stable isotopes shows the following: 1) YFT1 is the oldest shell midden known, providing minimum constraints on full coastal adaptation by â¼120 ka; 2) despite rapid sea-level drop and other climatic changes during occupation, relative shellfish proportions and sizes remain similar, suggesting adaptive foraging along a changing coastline; 3) the YFT1 lithic technocomplex is similar to other west coast assemblages but distinct from potentially synchronous industries along the southern African coast, suggesting human populations were fragmented between seasonal rainfall zones; and 4) accumulation rates (up to 1.8 m/ka) are much higher than previously observed for dated, stratified MSA middens, implying more intense site occupation akin to Later Stone Age middens.
Assuntos
Arqueologia/métodos , Sedimentos Geológicos/análise , Datação Radiométrica/métodos , Adaptação Fisiológica/fisiologia , Animais , Casca de Ovo/química , Fósseis , História Antiga , Hominidae , Humanos , África do Sul , Struthioniformes/fisiologia , Tório/análise , Tório/química , Urânio/análise , Urânio/químicaRESUMO
The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand.
RESUMO
Hershkovitz et al (Reports, 26 January 2018, p. 456) interpreted the Misliya-1 fossil maxilla as evidence of the earliest known anatomically modern human outside Africa. However, the fossil's reported age of 177,000 to 194,000 years relies on flawed interpretations of uranium-series data. We contend that those data support a minimum age of no more than ~60,000 to 70,000 years.
Assuntos
Fósseis , Hominidae , África , Animais , Humanos , Maxila , TempoRESUMO
The origin of the Middle Stone Age (MSA) marks the transition from a highly persistent mode of stone toolmaking, the Acheulean, to a period of increasing technological innovation and cultural indicators associated with the evolution of Homo sapiens We used argon-40/argon-39 and uranium-series dating to calibrate the chronology of Acheulean and early MSA artifact-rich sedimentary deposits in the Olorgesailie basin, southern Kenya rift. We determined the age of late Acheulean tool assemblages from 615,000 to 499,000 years ago, after which a large technological and faunal transition occurred, with a definitive MSA lacking Acheulean elements beginning most likely by ~320,000 years ago, but at least by 305,000 years ago. These results establish the oldest repository of MSA artifacts in eastern Africa.
Assuntos
Atividades Humanas/história , Desenvolvimento Industrial/história , História Antiga , Humanos , QuêniaRESUMO
A fast-growing stalagmite from the central California coast provides a high-resolution record of climatic changes synchronous with global perturbations resulting from the catastrophic drainage of proglacial Lake Agassiz at ca. 8.2 ka. High frequency, large amplitude variations in carbon isotopes during the 8.2 ka event, coupled with pulsed increases in phosphorus concentrations, indicate more frequent or intense winter storms on the California coast. Decreased magnesium-calcium ratios point toward a sustained increase in effective moisture during the event, however the magnitude of change in Mg/Ca suggests this event was not as pronounced on the western North American coast as anomalies seen in the high northern latitudes and monsoon-influenced areas. Nevertheless, shifts in the White Moon Cave record that are synchronous within age uncertainties with cooling of Greenland, and changes in global monsoon systems, suggest rapid changes in atmospheric circulation occurred in response to freshwater input and associated cooling in the North Atlantic region. Our record is consistent with intensification of the Pacific winter storm track in response to North Atlantic freshwater forcing, a mechanism suggested by simulations of the last deglaciation, and indicates this intensification led to increases in precipitation and infiltration along the California coast during the Holocene.
RESUMO
Our understanding of the frequency of large earthquakes at timescales longer than instrumental and historical records is based mostly on paleoseismic studies of fast-moving plate-boundary faults. Similar study of intraplate faults has been limited until now, because intraplate earthquake recurrence intervals are generally long (10s to 100s of thousands of years) relative to conventional paleoseismic records determined by trenching. Long-term variations in the earthquake recurrence intervals of intraplate faults therefore are poorly understood. Longer paleoseismic records for intraplate faults are required both to better quantify their earthquake recurrence intervals and to test competing models of earthquake frequency (e.g., time-dependent, time-independent, and clustered). We present the results of U-Th dating of calcite veins in the Loma Blanca normal fault zone, Rio Grande rift, New Mexico, United States, that constrain earthquake recurrence intervals over much of the past â¼550 ka-the longest direct record of seismic frequency documented for any fault to date. The 13 distinct seismic events delineated by this effort demonstrate that for >400 ka, the Loma Blanca fault produced periodic large earthquakes, consistent with a time-dependent model of earthquake recurrence. However, this time-dependent series was interrupted by a cluster of earthquakes at â¼430 ka. The carbon isotope composition of calcite formed during this seismic cluster records rapid degassing of CO2, suggesting an interval of anomalous fluid source. In concert with U-Th dates recording decreased recurrence intervals, we infer seismicity during this interval records fault-valve behavior. These data provide insight into the long-term seismic behavior of the Loma Blanca fault and, by inference, other intraplate faults.
RESUMO
Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast coatings (pedothems), which are widely distributed in semiarid to arid regions worldwide. Our new multiisotope pedothem record from the Wind River Basin in Wyoming confirms a previously hypothesized period of increased transport of Gulf of Mexico moisture northward into the continental interior from 70,000 to 55,000 years ago based on oxygen and carbon isotopes determined by ion microprobe and uranium isotopes and U-Th dating by laser ablation inductively coupled plasma mass spectrometry. This pronounced meridional moisture transport, which contrasts with the dominant zonal transport of Pacific moisture into the North American interior by westerly winds before and after 70,000-55,000 years ago, may have resulted from a persistent anticyclone developed above the North American ice sheet during Marine Isotope Stage 4. We conclude that pedothems, when analyzed using microanalytical techniques, can provide high-resolution paleoclimate records that may open new avenues into understanding past terrestrial climates in regions where paleoclimate records are not otherwise available. When pedothem paleoclimate records are combined with existing records they will add complimentary soil-based perspectives on paleoclimate conditions.
RESUMO
In Polynesia, the complex Society Islands chiefdoms constructed elaborate temples (marae), some of which reached monumental proportions and were associated with human sacrifice in the 'Oro cult. We investigated the development of temples on Mo'orea Island by 230Th/U dating of corals used as architectural elements (facing veneers, cut-and-dressed blocks, and offerings). The three largest coastal marae (associated with the highest-ranked chiefly lineages) and 19 marae in the inland 'Opunohu Valley containing coral architectural elements were dated. Fifteen corals from the coastal temples meet geochemical criteria for accurate 230Th/U dating, yield reproducible ages for each marae, and have a mean uncertainty of 9 y (2sigma). Of 41 corals from wetter inland sites, 12 show some diagenesis and may yield unreliable ages; however, the majority (32) of inland dates are considered accurate. We also obtained six 14C dates on charcoal from four marae. The dates indicate that temple architecture on Mo'orea Island developed rapidly over a period of approximately 140 y (ca. AD 1620-1760), with the largest coastal temples constructed immediately before initial European contact (AD 1767). The result of a seriation of architectural features corresponds closely with this chronology. Acropora coral veneers were superceded by cut-and-dressed Porites coral blocks on altar platforms, followed by development of multitier stepped altar platforms and use of pecked basalt stones associated with the late 'Oro cult. This example demonstrates that elaboration of ritual architecture in complex societies may be surprisingly rapid.
Assuntos
Antozoários/metabolismo , Arquitetura/métodos , Evolução Biológica , Comportamento Ritualístico , Animais , Antozoários/anatomia & histologia , Arquitetura/tendências , Humanos , Polinésia , Poluentes Radioativos/análise , Poluentes Radioativos/metabolismo , Tório/análise , Tório/metabolismo , Fatores de Tempo , Urânio/análise , Urânio/metabolismoRESUMO
The Hawaiian-Emperor bend has played a prominent yet controversial role in deciphering past Pacific plate motions and the tempo of plate motion change. New ages for volcanoes of the central and southern Emperor chain define large changes in volcanic migration rate with little associated change in the chain's trend, which suggests that the bend did not form by slowing of the Hawaiian hot spot. Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion.
RESUMO
During the last glacial period, large millennial-scale temperature oscillations--the 'Dansgaard/Oeschger' cycles--were the primary climate signal in Northern Hemisphere climate archives from the high latitudes to the tropics. But whether the influence of these abrupt climate changes extended to the tropical and subtropical Southern Hemisphere, where changes in insolation are thought to be the main direct forcing of climate, has remained unclear. Here we present a high-resolution oxygen isotope record of a U/Th-dated stalagmite from subtropical southern Brazil, covering the past 116,200 years. The oxygen isotope signature varies with shifts in the source region and amount of rainfall in the area, and hence records changes in atmospheric circulation and convective intensity over South America. We find that these variations in rainfall source and amount are primarily driven by summer solar radiation, which is controlled by the Earth's precessional cycle. The Dansgaard/Oeschger cycles can be detected in our record and therefore we confirm that they also affect the tropical hydrological cycle, but that in southern subtropical Brazil, millennial-scale climate changes are not as dominant as they are in the Northern Hemisphere.
Assuntos
Movimentos do Ar , Atmosfera/química , Clima Tropical , Brasil , História Antiga , Metano/análise , Isótopos de Oxigênio , Chuva , Estações do Ano , Luz Solar , Temperatura , Fatores de Tempo , Árvores/fisiologia , Água/análiseRESUMO
In proto-historic Hawaii (1500-1795 A.D.), as in many other evolving polities, temples functioned as centers for control over production and the extraction of surplus food and goods. Thorium-230 dates (uncertainty +/- approximately 10 years) on branch coral dedicatory offerings from temples in the Kahikinui district (Maui) indicate that its temple system was constructed within 60 years, far more rapidly than indicated by radiocarbon dating. Introduction of the temple system in 1580-1640 A.D. coincided with predatory expansion and consolidation of the Maui polity to form an incipient archaic state.