Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2207081120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523550

RESUMO

We assess wheat yield losses occurring due to ozone pollution in India and its economic burden on producers, consumers, and the government. Applying an ozone flux-based risk assessment, we show that ambient ozone levels caused a mean 14.18% reduction in wheat yields during 2008 to 2012. Furthermore, irrigated wheat was particularly sensitive to ozone-induced yield losses, indicating that ozone pollution could undermine climate-change adaptation efforts through irrigation expansion. Applying an economic model, we examine the effects of a counterfactual, "pollution-free" scenario on yield losses, wheat prices, consumer and producer welfare, and government costs. We explore three policy scenarios in which the government support farmers at observed levels of either procurement prices (fixed-price), procurement quantities (fixed-procurement), or procurement expenditure (fixed-expenditure). In pollution-free conditions, the fixed-price scenario absorbs the fall in prices, thus increasing producer welfare by USD 2.7 billion, but total welfare decreases by USD 0.24 billion as government costs increase (USD 2.9 billion). In the fixed-procurement and fixed-expenditure scenarios, ozone mitigation allows wheat prices to fall by 38.19 to 42.96%. The producers lose by USD 5.10 to 6.01 billion, but the gains to consumers and governments (USD 8.7 to 10.2 billion) outweigh these losses. These findings show that the government and consumers primarily bear the costs of ozone pollution. For pollution mitigation to optimally benefit wheat production and maximize social welfare, new approaches to support producers other than fixed-price grain procurement may be required. We also emphasize the need to consider air pollution in programs to improve agricultural resilience to climate change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Ozônio/análise , Triticum , Poluentes Atmosféricos/análise , Governo
2.
Environ Sci Pollut Res Int ; 28(44): 62338-62352, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34191262

RESUMO

Tropospheric ozone can have a detrimental effect on vegetation, including reducing the quantity of crop yield. This study uses modelled ozone flux values (POD3IAM; phytotoxic ozone dose above 3 nmol m-2 s-1, parameterised for integrated assessment modelling) for 2015, together with species-specific flux-effect relationships, spatial data on production and growing season dates to quantify the impact of ozone on the production of common wheat (Triticum aestivum) and common beans (Phaseolus vulgaris) across Sub-Saharan Africa (SSA). A case study for South Africa was also done using detailed data per province. Results suggest that ozone pollution could decrease wheat yield by between 2 and 13%, with a total annual loss of 453,000 t across SSA. The impact on bean production depended on the season; however, estimated yield losses were up to 21% in some areas of SSA, with an annual loss of ~300,000 t for each of the two main growing seasons. Production losses tended to be greater in countries with the highest production, for example, Ethiopia (wheat) and Tanzania (beans). This study provides an indication of the location of areas at high risk of crop losses due to ozone. Results emphasise that efforts to reduce ozone precursors could contribute to reducing the yield gap in SSA. More stringent air pollution abatement policies are required to reduce crop losses to ozone in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Produtos Agrícolas , Etiópia , Ozônio/análise
3.
Glob Chang Biol ; 27(10): 2159-2173, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33609321

RESUMO

The sensitivity of photosynthesis to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial carbon cycle response to future climate change. Although thermal acclimation of photosynthesis under rising temperature has been reported in many tree species, whether tropospheric ozone (O3 ) affects the acclimation capacity remains unknown. In this study, temperature responses of photosynthesis (light-saturated rate of photosynthesis (Asat ), maximum rates of RuBP carboxylation (Vcmax ), and electron transport (Jmax ) and dark respiration (Rdark ) of Populus tremula exposed to ambient O3 (AO3 , maximum of 30 ppb) or elevated O3 (EO3 , maximum of 110 ppb) and ambient or elevated temperature (ambient +5°C) were investigated in solardomes. We found that the optimum temperature of Asat (ToptA ) significantly increased in response to warming. However, the thermal acclimation capacity was reduced by O3 exposure, as indicated by decreased ToptA , and temperature optima of Vcmax (ToptV ) and Jmax (ToptJ ) under EO3 . Changes in both stomatal conductance (gs ) and photosynthetic capacity (Vcmax and Jmax ) contributed to the shift of ToptA by warming and EO3 . Neither Rdark measured at 25°C ( R dark 25 ) nor the temperature response of Rdark was affected by warming, EO3 , or their combination. The responses of Asat , Vcmax , and Jmax to warming and EO3 were closely correlated with changes in leaf nitrogen (N) content and N use efficiency. Overall, warming stimulated growth (leaf biomass and tree height), whereas EO3 reduced growth (leaf and woody biomass). The findings indicate that thermal acclimation of Asat may be overestimated if the impact of O3 pollution is not taken into account.


Assuntos
Ozônio , Populus , Aclimatação , Nitrogênio , Fotossíntese , Folhas de Planta
4.
Environ Pollut ; 268(Pt A): 115789, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120352

RESUMO

Tropospheric (ground-level) ozone is a harmful phytotoxic pollutant, and can have a negative impact on crop yield and quality in sensitive species. Ozone can also induce visible symptoms on leaves, appearing as tiny spots (stipples) between the veins on the upper leaf surface. There is little measured data on ozone concentrations in Africa and it can be labour-intensive and expensive to determine the direct impact of ozone on crop yield in the field. The identification of visible ozone symptoms is an easier, low cost method of determining if a crop species is being negatively affected by ozone pollution, potentially resulting in yield loss. In this study, thirteen staple African food crops (including wheat (Triticum aestivum), common bean (Phaseolus vulgaris), sorghum (Sorghum bicolor), pearl millet (Pennisetum glaucum) and finger millet (Eleusine coracana)) were exposed to an episodic ozone regime in a solardome system to monitor visible ozone symptoms. A more detailed examination of the progression of ozone symptoms with time was carried out for cultivars of P. vulgaris and T. aestivum, which showed early leaf loss (P. vulgaris) and an increased rate of senescence (T. aestivum) in response to ozone exposure. All of the crops tested showed visible ozone symptoms on their leaves in at least one cultivar, and ozone sensitivity varied between cultivars of the same crop. A guide to assist with identification of visible ozone symptoms (including photographs and a description of symptoms for each species) is presented.


Assuntos
Ozônio , África , Grão Comestível , Ozônio/toxicidade , Folhas de Planta , Triticum
5.
Plants (Basel) ; 8(7)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336902

RESUMO

Ground-level ozone (O3) pollution is known to adversely affect the production of O3-sensitive crops such as wheat. The magnitude of impact is dependent on the accumulated stomatal flux of O3 into the leaves. In well-irrigated plants, the leaf pores (stomata) tend to be wide open, which stimulates the stomatal flux and therefore the adverse impact of O3 on yield. To test whether reduced irrigation might mitigate O3 impacts on flag leaf photosynthesis and yield parameters, we exposed an O3-sensitive Kenyan wheat variety to peak concentrations of 30 and 80 ppb O3 for four weeks in solardomes and applied three irrigation regimes (well-watered, frequent deficit, and infrequent deficit irrigation) during the flowering and grain filling stage. Reduced irrigation stimulated 1000-grain weight and harvest index by 33% and 13%, respectively (when O3 treatments were pooled), which compensated for the O3-induced reductions observed in well-watered plants. Whilst full irrigation accelerated the O3-induced reduction in photosynthesis by a week, such an effect was not observed for the chlorophyll content index of the flag leaf. Further studies under field conditions are required to test whether reduced irrigation can be applied as a management tool to mitigate adverse impacts of O3 on wheat yield.

6.
Sci Total Environ ; 660: 1038-1046, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743901

RESUMO

To investigate whether nitrogen (N) load affects the ozone (O3) stomatal flux-effect relationship for birch biomass, three-year old birch saplings were exposed to seven different O3 profiles (24 h mean of 35-66 ppb) and four different N loads (10, 30, 50 and 70 kg ha-1 yr-1) in precision-controlled hemispherical glasshouses (solardomes) in 2012 and 2013. Stomatal conductance (gs) under optimal growth conditions was stimulated by enhanced N supply but was not significantly affected by enhanced O3 exposure. Birch root, woody (stem + branches) and total biomass (root + woody) were not affected by the Phytotoxic Ozone Dose (POD1SPEC) after two seasons of O3 exposure, and enhanced N supply stimulated biomass production independent of POD1SPEC (i.e. there were no POD1SPEC × N interactions). There was a strong linear relationship between the stem cross-sectional area and tree biomass at the end of the experiment, which was not affected by O3 exposure or N load. Enhanced N supply stimulated the stem cross-sectional area at the end of season 2, but not at the end of season 1, which suggests a time lag before tree biomass responded to enhanced N supply. There was no significant effect of POD1SPEC on stem cross-sectional area after either the first or second growing season of the experiment. Contrasting results reported in the literature on the interactive impacts of O3 and N load on tree physiology and growth are likely due to species-specific responses, different duration of the experiments and/or a limitation of the number of O3 and N levels tested.


Assuntos
Poluentes Atmosféricos/toxicidade , Betula/fisiologia , Monitoramento Ambiental , Nitrogênio/metabolismo , Ozônio/toxicidade , Betulaceae , Biomassa , Nitrogênio/análise , Estações do Ano
7.
Glob Chang Biol ; 24(10): 4869-4893, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084165

RESUMO

Increasing both crop productivity and the tolerance of crops to abiotic and biotic stresses is a major challenge for global food security in our rapidly changing climate. For the first time, we show how the spatial variation and severity of tropospheric ozone effects on yield compare with effects of other stresses on a global scale, and discuss mitigating actions against the negative effects of ozone. We show that the sensitivity to ozone declines in the order soybean > wheat > maize > rice, with genotypic variation in response being most pronounced for soybean and rice. Based on stomatal uptake, we estimate that ozone (mean of 2010-2012) reduces global yield annually by 12.4%, 7.1%, 4.4% and 6.1% for soybean, wheat, rice and maize, respectively (the "ozone yield gaps"), adding up to 227 Tg of lost yield. Our modelling shows that the highest ozone-induced production losses for soybean are in North and South America whilst for wheat they are in India and China, for rice in parts of India, Bangladesh, China and Indonesia, and for maize in China and the United States. Crucially, we also show that the same areas are often also at risk of high losses from pests and diseases, heat stress and to a lesser extent aridity and nutrient stress. In a solution-focussed analysis of these results, we provide a crop ideotype with tolerance of multiple stresses (including ozone) and describe how ozone effects could be included in crop breeding programmes. We also discuss altered crop management approaches that could be applied to reduce ozone impacts in the shorter term. Given the severity of ozone effects on staple food crops in areas of the world that are also challenged by other stresses, we recommend increased attention to the benefits that could be gained from addressing the ozone yield gap.


Assuntos
Aclimatação/fisiologia , Agricultura/métodos , Produtos Agrícolas/fisiologia , Ozônio , Estresse Fisiológico/fisiologia , Agricultura/estatística & dados numéricos , Mudança Climática , Produtos Agrícolas/classificação , Abastecimento de Alimentos/estatística & dados numéricos , Modelos Teóricos , Melhoramento Vegetal , Especificidade da Espécie
8.
Glob Chang Biol ; 24(8): 3560-3574, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29604158

RESUMO

Introduction of high-performing crop cultivars and crop/soil water management practices that increase the stomatal uptake of carbon dioxide and photosynthesis will be instrumental in realizing the United Nations Sustainable Development Goal (SDG) of achieving food security. To date, however, global assessments of how to increase crop yield have failed to consider the negative effects of tropospheric ozone, a gaseous pollutant that enters the leaf stomatal pores of plants along with carbon dioxide, and is increasing in concentration globally, particularly in rapidly developing countries. Earlier studies have simply estimated that the largest effects are in the areas with the highest ozone concentrations. Using a modelling method that accounts for the effects of soil moisture deficit and meteorological factors on the stomatal uptake of ozone, we show for the first time that ozone impacts on wheat yield are particularly large in humid rain-fed and irrigated areas of major wheat-producing countries (e.g. United States, France, India, China and Russia). Averaged over 2010-2012, we estimate that ozone reduces wheat yields by a mean 9.9% in the northern hemisphere and 6.2% in the southern hemisphere, corresponding to some 85 Tg (million tonnes) of lost grain. Total production losses in developing countries receiving Official Development Assistance are 50% higher than those in developed countries, potentially reducing the possibility of achieving UN SDG2. Crucially, our analysis shows that ozone could reduce the potential yield benefits of increasing irrigation usage in response to climate change because added irrigation increases the uptake and subsequent negative effects of the pollutant. We show that mitigation of air pollution in a changing climate could play a vital role in achieving the above-mentioned UN SDG, while also contributing to other SDGs related to human health and well-being, ecosystems and climate change.


Assuntos
Poluição do Ar/efeitos adversos , Mudança Climática , Ozônio/química , Ozônio/toxicidade , Triticum/efeitos dos fármacos , Dióxido de Carbono/análise , Monitoramento Ambiental , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Chuva , Triticum/crescimento & desenvolvimento
9.
J Plant Physiol ; 211: 42-52, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28152417

RESUMO

Ground-level ozone (O3) concentrations and atmospheric nitrogen (N) deposition rates have increased strongly since the 1950s. Rising ground-level O3 concentrations and atmospheric N deposition both affect plant physiology and growth, however, impacts have often been studied in isolation rather than in combination. In addition, studies are often limited to a control treatment and one or two elevated levels of ozone and/or nitrogen supply. In the current study, three-year old Betula pendula saplings were exposed to seven different O3 profiles (24h mean O3 concentration of 36-68ppb in 2013, with peaks up to an average of 105ppb) in precision-controlled hemispherical glasshouses (solardomes) and four different N loads (10, 30, 50 or 70kgNha-1y-1) in 2012 and 2013. Here we report on the effects of enhanced O3 concentrations and N load on leaf traits and gas exchange in leaves of varying age and developmental stage in 2013. The response of leaf traits to O3 (but not N) vary with leaf developmental stage. For example, elevated O3 did not affect the chlorophyll content of the youngest fully expanded leaf, but it reduced the chlorophyll content and photosynthetic parameters in aging leaves, relatively more so later than earlier in the growing season. Elevated O3 enhanced the N content of senesced leaves prior to leaf fall, potentially affecting subsequent N cycling in the soil. Enhanced N generally stimulated the chlorophyll content and photosynthetic capacity. Whilst elevated O3 reduced the light-saturated rate of photosynthesis (Asat) in aging leaves, it did not affect stomatal conductance (gs). This suggests that photosynthesis and gs are not closely coupled at elevated O3 under-light saturating conditions. We did not observe any interactions between O3 and N regarding photosynthetic parameters (Vc,max, Jmax, Asat), chlorophyll content, gs, N content in senesced leaves and leaf number. Hence, the sensitivity of these leaf traits to O3 in young silver birch trees is neither reduced nor enhanced by N load.


Assuntos
Betula/fisiologia , Nitrogênio/farmacologia , Ozônio/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Betula/efeitos dos fármacos , Betula/efeitos da radiação , Clorofila/metabolismo , Clima , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estações do Ano
10.
Sci Total Environ ; 584-585: 118-130, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28147292

RESUMO

Ecosystem services modelling tools can help land managers and policy makers evaluate the impacts of alternative management options or changes in land use on the delivery of ecosystem services. As the variety and complexity of these tools increases, there is a need for comparative studies across a range of settings, allowing users to make an informed choice. Using examples of provisioning and regulating services (water supply, carbon storage and nutrient retention), we compare three spatially explicit tools - LUCI (Land Utilisation and Capability Indicator), ARIES (Artificial Intelligence for Ecosystem Services) and InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). Models were parameterised for the UK and applied to a temperate catchment with widely varying land use in North Wales. Although each tool provides quantitative mapped output, can be applied in different contexts, and can work at local or national scale, they differ in the approaches taken and underlying assumptions made. In this study, we focus on the wide range of outputs produced for each service and discuss the differences between each modelling tool. Model outputs were validated using empirical data for river flow, carbon and nutrient levels within the catchment. The sensitivity of the models to land-use change was tested using four scenarios of varying severity, evaluating the conversion of grassland habitat to woodland (0-30% of the landscape). We show that, while the modelling tools provide broadly comparable quantitative outputs, each has its own unique features and strengths. Therefore the choice of tool depends on the study question.

11.
Ecol Evol ; 6(24): 8785-8799, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28035269

RESUMO

Risks associated with exposure of individual plant species to ozone (O3) are well documented, but implications for terrestrial biodiversity and ecosystem processes have received insufficient attention. This is an important gap because feedbacks to the atmosphere may change as future O3 levels increase or decrease, depending on air quality and climate policies. Global simulation of O3 using the Community Earth System Model (CESM) revealed that in 2000, about 40% of the Global 200 terrestrial ecoregions (ER) were exposed to O3 above thresholds for ecological risks, with highest exposures in North America and Southern Europe, where there is field evidence of adverse effects of O3, and in central Asia. Experimental studies show that O3 can adversely affect the growth and flowering of plants and alter species composition and richness, although some communities can be resilient. Additional effects include changes in water flux regulation, pollination efficiency, and plant pathogen development. Recent research is unraveling a range of effects belowground, including changes in soil invertebrates, plant litter quantity and quality, decomposition, and nutrient cycling and carbon pools. Changes are likely slow and may take decades to become detectable. CESM simulations for 2050 show that O3 exposure under emission scenario RCP8.5 increases in all major biomes and that policies represented in scenario RCP4.5 do not lead to a general reduction in O3 risks; rather, 50% of ERs still show an increase in exposure. Although a conceptual model is lacking to extrapolate documented effects to ERs with limited or no local information, and there is uncertainty about interactions with nitrogen input and climate change, the analysis suggests that in many ERs, O3 risks will persist for biodiversity at different trophic levels, and for a range of ecosystem processes and feedbacks, which deserves more attention when assessing ecological implications of future atmospheric pollution and climate change.

12.
Environ Pollut ; 208(Pt B): 898-908, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26412200

RESUMO

This paper provides a process-oriented perspective on the combined effects of ozone (O3), climate change and/or nitrogen (N) on vegetation. Whereas increasing CO2 in controlled environments or open-top chambers often ameliorates effects of O3 on leaf physiology, growth and C allocation, this is less likely in the field. Combined responses to elevated temperature and O3 have rarely been studied even though some critical growth stages such as seed initiation are sensitive to both. Under O3 exposure, many species have smaller roots, thereby enhancing drought sensitivity. Of the 68 species assessed for stomatal responses to ozone, 22.5% were unaffected, 33.5% had sluggish or increased opening and 44% stomatal closure. The beneficial effect of N on root development was lost at higher O3 treatments whilst the effects of increasing O3 on root biomass became more pronounced as N increased. Both responses to gradual changes in pollutants and climate and those under extreme weather events require further study.


Assuntos
Poluentes Atmosféricos/toxicidade , Mudança Climática , Nitrogênio/análise , Ozônio/toxicidade , Biomassa , Clima , Secas , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA