Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(1): 122-132, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37698482

RESUMO

Uveal melanoma is an ocular tumor with a high risk of developing metastases. The endo-lysosomal system can affect the melanoma progression by accelerating and facilitating invasion or metastasis. This study aims to conduct comparative analysis of normal choroidal melanocytes and uveal melanoma cells ultrastructure with a focus on intracellular transport system, and to examine the patterns of autophagy- and vesicular trafficking-related proteins expression in a case series of uveal melanomas. Transmission electron microscopy was used to assess the ultrastructure of normal choroidal melanocytes and uveal melanoma cells. The expression levels of autophagy- and vesicular trafficking-related proteins in three histological types of uveal melanoma were analyzed by immunofluorescence staining. Electron microscopy results showed that the autophagic vacuoles were more abundant in normal choroidal melanocytes, than in uveal melanoma cells. The normal choroidal melanocytes were characterized by active intracellular vesicular trafficking; however, the proportion of caveolae was higher in uveal melanoma cells. The spindle type of tumor was characterized by a high expression levels of LC3 beta, while Rab7 and Rab11 proteins expression was significantly up-regulated in the mixed-type tumor cells. The results indicate that uveal melanoma cells probably have lower basal levels of autophagy and higher receptor-mediated endocytic trafficking-associated with caveolae than normal choroidal melanocytes. RESEARCH HIGHLIGHTS: The autophagic vacuoles are abundant in normal choroidal melanocytes. Uveal melanoma cells are characterized by a high proportion of caveolae. The high expression levels of LC3 beta were revealed in a spindle type of tumor, while Rab7 and Rab11 proteins expression was up-regulated in the mixed-type tumor cells.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Melanoma/patologia , Melanócitos/patologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Autofagia
2.
Microsc Microanal ; : 1-9, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35592888

RESUMO

Lithium is an inhibitor of glycogen synthase kinase 3 beta, which is traditionally used in the treatment of bipolar disorders and has antitumor effects. The aim of the current study was to determine if lithium salt causes autophagy and apoptosis in skin melanoma cells to enhance cell death. Light microscopy, transmission electron microscopy, immunohistochemistry, and immunofluorescence were used to study the mechanism of action of lithium carbonate in B16 melanoma cells in vivo. Proliferating cell nuclear antigen immunofluorescence assay revealed that the proliferation of B16 melanoma cells was suppressed by lithium treatment for 7 days. Electron microscopy demonstrated a significant increase in the number of autophagic vacuoles in lithium-treated cells relative to control. In addition, levels of autophagy markers LC3 beta and LAMP1 found in lithium-treated tumor xenografts were higher than levels of these markers in the control tumors. Lithium induced caspase-3 expression and apoptotic cell death in tumor cells. Thus, lithium carbonate is the compound that inhibits cell proliferation and stimulates cell death in melanoma cells through induction of autophagy and apoptosis. Stimulation of autophagy by lithium could contribute to the development of autophagic cell death in tumor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA