Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Int J Biol Macromol ; : 135224, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218179

RESUMO

Polyphenol-functionalized biomaterials are significant in the field of bone tissue engineering (BTE) due to their antioxidant, anti-inflammatory, and osteoinductive properties. In this study, a gelatin (Gel)-based scaffold was functionalized with phloridzin (Ph), the primary polyphenol in apple by-products, to investigate its influence on physicochemical and morphological, properties of the scaffold for BTE application. A preliminary assessment of the biological properties of the functionalized scaffold was also undertaken. The Ph-functionalized scaffold (Gel/Ph) exhibited a porous structure with high porosity (71.3 ±â€¯0.3 %), a pore size of 206.5 ±â€¯1.7 µm, and a radical scavenging activity exceeding 70 %. This scaffold with Young's modulus of 10.8 MPa was determined to support cell proliferation and exhibited cytocompatibility with mesenchymal stem cells (MSCs). Incorporating hydroxyapatite nanoparticle (HA) in the Gel/Ph scaffold stimulated the osteogenic differentiation of key osteogenic genes, including Runx2, ALPL, COL1A1, and OSX ultimately promoting mineralization. This research highlights the promising potential of utilizing polyphenolic compounds derived from fruit waste to functionalize scaffolds for BTE applications.

2.
Int J Biol Macromol ; 278(Pt 2): 134424, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111509

RESUMO

The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported. The resulting OQG hydrogels demonstrated injectability to aid in conforming to irregular wound geometries, rapid self-healing to maintain structural integrity and adhesion for intimate integration with wound beds. Moreover, the developed hydrogels possessed antioxidant and antibacterial activities, mitigating inflammation and preventing infection. The incorporation of conductive rGO further facilitated the transmission of endogenous electrical signals, stimulating cell migration and tissue regeneration. In addition, the polydopamine-encapsulated asiaticoside (AC@PDA) nanoparticles were encapsulated in OQG hydrogels to reduce scar formation during in vivo evaluations. In vitro results confirmed the histocompatibility of the hydrogels to promote cell migration. The recovery of the full-thickness rat wounds revealed that these designed OQG hydrogels with the incorporation of AC@PDA nanoparticles could accelerate wound healing, reduce inflammation, facilitate angiogenesis, and minimize scarring when implemented. This multifunctional hydrogel system offers a promising strategy for enhanced wound management and scarless tissue regeneration, addressing the multifaceted challenges in wound care.

5.
Adv Healthc Mater ; : e2401713, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183514

RESUMO

Oxygen is essential for normal cellular functions. Hypoxia impacts various cellular processes, such as metabolism, growth, proliferation, angiogenesis, metastasis, tumorigenesis, microbial infection, and immune response, mediated by hypoxia-inducible factors (HIFs). Hypoxia contributes to the progression and development of cancer, cardiovascular diseases, metabolic disorders, kidney diseases, and infections. The potential alleviation of hypoxia has been explored through the enzymatic in situ decomposition of hydrogen peroxide, leading to the generation of oxygen. However, challenges such as limited stability restrict the effectiveness of enzymes such as catalase in biomedical and in vivo applications. To overcome these limitations, targeted delivery of the enzymes has been proposed. This review offers a critical comparison of i) current approaches to enhance the in vivo stability of catalase; and ii) the structure, mechanism of action, and kinetics of catalase and catalase-like nanozymes.

6.
Front Chem ; 12: 1402870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841337

RESUMO

The healing of damaged skin is a complex and dynamic process, and the multi-functional hydrogel dressings could promote skin tissue healing. This study, therefore, explored the development of a composite multifunctional hydrogel (HDCP) by incorporating the dopamine modified hyaluronic acid (HA-DA) and phenylboronic acid modified chitosan (CS-PBA) crosslinked using boric acid ester bonds. The integration of HA-DA and CS-PBA could be confirmed using the Fourier transform infrared spectrometer and 1H nuclear magnetic resonance analyses. The fabricated HDCP hydrogels exhibited porous structure, elastic solid behavior, shear-thinning, and adhesion properties. Furthermore, the HDCP hydrogels exhibited antibacterial efficacy against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Subsequently, the cytocompatibility of the HDCP hydrogels was verified through CCK-8 assay and fluorescent image analysis following co-cultivation with NIH-3T3 cells. This research presents an innovative multifunctional hydrogel that holds promise as a wound dressing for various applications within the realm of wound healing.

7.
Biomed Mater ; 19(4)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38815598

RESUMO

Bacterial infection can lead to various complications, such as inflammations on surrounding tissues, which can prolong wound healing and thus represent a significant clinical and public healthcare problem. Herein, a report on the fabrication of a novel genipin/quaternized chitosan (CS) hydrogel for wound dressing is presented. The hydrogel was prepared by mixing quaternized CS and genipin under 35 °C bath. The hydrogels showed porous structure (250-500 µm) and mechanical properties (3000-6000 Pa). In addition, the hydrogels displayed self-healing ability and adhesion performance on different substrates. Genipin crosslinked quaternized CS hydrogels showed antibacterial activities againstE. coliandS. aureus. The CCK-8 and fluorescent images confirmed the cytocompatibility of hydrogels by seeding with NIH-3T3 cells. The present study showed that the prepared hydrogel has the potential to be used as wound dressing.


Assuntos
Antibacterianos , Bandagens , Quitosana , Reagentes de Ligações Cruzadas , Escherichia coli , Hidrogéis , Iridoides , Compostos de Amônio Quaternário , Staphylococcus aureus , Cicatrização , Quitosana/química , Iridoides/química , Animais , Camundongos , Hidrogéis/química , Cicatrização/efeitos dos fármacos , Células NIH 3T3 , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Compostos de Amônio Quaternário/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Porosidade
8.
Int J Biol Macromol ; 270(Pt 1): 132127, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718991

RESUMO

Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release. Also, the safety and efficacy were evaluated following an in vitro hydrogel injection study and an avascular necrosis (AVN) animal model. According to the results, the hydrogel exhibited an appropriate swelling ratio and water uptake (>90 %, 24 h) as well as a suitable degradation rate over 21 days accompanied by a continuous peptide release. Also, data showed that hydrogels containing QK peptide boosted the proliferation, differentiation, angiogenesis, and osteogenic potential of both Bone Marrow mesenchymal Stem Cells (BM-MSCs) and human umbilical vein endothelial cells (HUVECs) (****p < 0.0001 and ***p < 0.001, respectively). Furthermore, molecular and histological evaluations significantly demonstrated the overexpression of Runx2, Osteocalcin, Collagen I, VEGF and CD34 genes (**p < 0.01 and ***p < 0.001, respectively), and also femoral head necrosis was effectively prohibited, and more blood vessels were detected in defect area by OCMC-CMCS hydrogel containing QK peptide (bone trabeculae >9000, ***p < 0.001). In conclusion, the findings demonstrate that OCMC-CMCS-QK injectable hydrogel could be considered as an impressive therapeutic construct for femoral head AVN healing.


Assuntos
Carboximetilcelulose Sódica , Quitosana , Necrose da Cabeça do Fêmur , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Animais , Humanos , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Injeções , Neovascularização Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Masculino , Coelhos , Modelos Animais de Doenças
9.
Environ Res ; 252(Pt 3): 118933, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642645

RESUMO

Indole-3-acetic acid (IAA) derived from Actinobacteria fermentations on agro-wastes constitutes a safer and low-cost alternative to synthetic IAA. This study aims to select a high IAA-producing Streptomyces-like strain isolated from Lake Oubeira sediments (El Kala, Algeria) for further investigations (i.e., 16S rRNA gene barcoding and process optimization). Subsequently, artificial intelligence-based approaches were employed to maximize IAA bioproduction on spent coffee grounds as high-value-added feedstock. The specificity was the novel application of the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Box (L-BFGS-B) optimization algorithm. The new strain AW08 was a significant producer of IAA (26.116 ± 0.61 µg/mL) and was identified as Streptomyces rutgersensis by 16S rRNA gene barcoding and phylogenetic inquiry. The empirical data involved the inoculation of AW08 in various cultural conditions according to a four-factor Box Behnken Design matrix (BBD) of Response surface methodology (RSM). The input parameters and regression equation extracted from the RSM-BBD were the basis for implementing and training the L-BFGS-B algorithm. Upon training the model, the optimal conditions suggested by the BBD and L-BFGS-B algorithm were, respectively, L-Trp (X1) = 0.58 %; 0.57 %; T° (X2) = 26.37 °C; 28.19 °C; pH (X3) = 7.75; 8.59; and carbon source (X4) = 30 %; 33.29 %, with the predicted response IAA (Y) = 152.8; 169.18 µg/mL). Our findings emphasize the potential of the multifunctional S. rutgersensis AW08, isolated and reported for the first time in Algeria, as a robust producer of IAA. Validation investigations using the bioprocess parameters provided by the L-BFGS-B and the BBD-RSM models demonstrate the effectiveness of AI-driven optimization in maximizing IAA output by 5.43-fold and 4.2-fold, respectively. This study constitutes the first paper reporting a novel interdisciplinary approach and providing insights into biotechnological advancements. These results support for the first time a reasonable approach for valorizing spent coffee grounds as feedstock for sustainable and economic IAA production from S. rutgersensis AW08.


Assuntos
Inteligência Artificial , Ácidos Indolacéticos , RNA Ribossômico 16S , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Ácidos Indolacéticos/metabolismo , RNA Ribossômico 16S/genética , Argélia , Filogenia
10.
Gels ; 10(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534593

RESUMO

The management of wound healing represents a significant clinical challenge due to the complicated processes involved. Chitosan has remarkable properties that effectively prevent certain microorganisms from entering the body and positively influence both red blood cell aggregation and platelet adhesion and aggregation in the bloodstream, resulting in a favorable hemostatic outcome. In recent years, chitosan-based hydrogels have been widely used as wound dressings due to their biodegradability, biocompatibility, safety, non-toxicity, bioadhesiveness, and soft texture resembling the extracellular matrix. This article first summarizes an overview of the main chemical modifications of chitosan for wound dressings and then reviews the desired properties of chitosan-based hydrogel dressings. The applications of chitosan-based hydrogels in wound healing, including burn wounds, surgical wounds, infected wounds, and diabetic wounds are then discussed. Finally, future prospects for chitosan-based hydrogels as wound dressings are discussed. It is anticipated that this review will form a basis for the development of a range of chitosan-based hydrogel dressings for clinical treatment.

11.
Environ Res ; 251(Pt 2): 118703, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518912

RESUMO

Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.


Assuntos
Fermentação , Ácido Oxálico , Ácido Oxálico/metabolismo , Bactérias/metabolismo
12.
Bioact Mater ; 36: 168-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38463551

RESUMO

Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 µm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.

13.
J Biomater Appl ; 38(9): 989-999, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38427917

RESUMO

In this study, dissolving microneedles (MNs) using polyvinyl alcohol (PVA) and poly (1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VA)) as matrix materials were developed for transdermal delivery of rizatriptan benzoate (RB) for acute migraine treatment. In-vitro permeation studies were conducted to assess the feasibility of the as-fabricated dissolving MNs to release RB. Drug skin penetration were tested by Franz diffusion cells, showing an increase of the transdermal flux compared to passive diffusion due to the as-fabricated dissolving MNs having a sufficient mechanical strength to penetrate the skin and form microchannels. The pharmacological study in vivo showed that RB-loaded dissolving MNs significantly alleviated migraine-related response by up-regulating the level of 5-hydroxytryptamine (5-HT) and down-regulating the levels of calcitonin gene-related peptide (CGRP) and substance P (SP). In conclusion, the RB-loaded dissolving MNs have advantages of safety, convenience, and high efficacy over conventional administrations, laying a foundation for the transdermal drug delivery system treatment for acute migraine.


Assuntos
Sistemas de Liberação de Medicamentos , Transtornos de Enxaqueca , Triazóis , Triptaminas , Humanos , Pele , Administração Cutânea , Transtornos de Enxaqueca/tratamento farmacológico , Agulhas
14.
Small Methods ; 8(8): e2301349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38193272

RESUMO

Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.


Assuntos
Monóxido de Carbono , Gases , Humanos , Gases/química , Óxido Nítrico , Animais , Sulfeto de Hidrogênio/química , Oxigênio/química , Dióxido de Carbono/química , Hidrogênio/química , Sistemas de Liberação de Medicamentos , Neoplasias/terapia , Neoplasias/tratamento farmacológico
15.
J Mater Chem B ; 12(4): 1064-1076, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38168723

RESUMO

An appropriate non-oral platform via transdermal delivery of drugs is highly recommended for the treatment of hyperuricemia. Herein, a core-shell structured microneedle patch with programmed drug release functions was designed to regulate serum uric acid (SUA) levels for prolonged hyperuricemia management. The patch was fabricated using a three-step casting method. Allopurinol (AP), an anti-hyperuricemic drug, was encapsulated within the carboxymethyl cellulose (CMC) layer, forming the "shell" of the MNs. The MN's inner core was composed of polyvinylpyrrolidone (PVP) loaded with urate oxidase-calcium peroxide nanoparticles (UOx-CaO2 NPs). When the as-fabricated core-shell structured microneedles were inserted into the skin, the loaded AP was first released immediately to effectively inhibit the production of SUA due to the water solubility of CMC. Subsequently, the internal SUA was further metabolized by UOx, leading to exposure of CaO2 NPs. The sustained release of UOx accompanied by the decomposition of CaO2 NPs contributed to maintaining a state of normal uric acid levels over an extended period. More attractively, uric acid could be oxidized due to the strong oxidant of CaO2, which was beneficial to the continuous consumption of uric acid. In vivo results showed that the as-fabricated MNs exhibited an excellent anti-hyperuricemia effect to reduce SUA levels to the normal state within 3 h and maintain the normouricemia state for 12 h. In addition, the levels of creatinine (Cr) and blood urea nitrogen (BUN) in the serum remained within the normal range, and the activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) in the liver were effectively inhabited, mitigating the risk of liver and kidney damage for clinical anti-hyperuricemia management.


Assuntos
Hiperuricemia , Humanos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico , Rim/metabolismo , Liberação Controlada de Fármacos , Alopurinol/metabolismo , Alopurinol/farmacologia , Alopurinol/uso terapêutico
16.
Biomed Mater ; 19(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38215487

RESUMO

The increased demand for improved strategies for wound healing has, in recent years, motivated the development of multifunctional hydrogels with favorable bio-compatibility and antibacterial properties. To this regard, the current study presented the design of a novel self-healing composite hydrogel that could perform as wound dressing for the promotion of wound healing. The composite hydrogels were composed of polyvinyl alcohol (PVA), borax and chitosan functionalized with sialic acid (SA-CS) and curcumin loaded pluronic F127 micelles. The hydrogels were formed through the boronic ester bond formation between PVA, SA-CS and borax under physiological conditions and demonstrated adjustable mechanical properties, gelation kinetics and antibacterial properties. When incubating with NIH3T3 cells, the hydrogels also demonstrated good biocompatibility. These aspects offer a promising foundation for their prospective applications in developing clinical materials for wound healing.


Assuntos
Boratos , Quitosana , Curcumina , Camundongos , Animais , Quitosana/química , Álcool de Polivinil/química , Curcumina/química , Micelas , Hidrogéis/química , Células NIH 3T3 , Bandagens , Antibacterianos/química
17.
Int J Pharm ; 652: 123811, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237709

RESUMO

Nanoformulations for combining chemotherapy, chemodynamic therapy, and photothermal therapy have enormous potential in tumor treatment. Coating nanoformulations with cell membranes endows them with homologous cellular mimicry, enabling nanoformulations to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused multifunctional biomimetic nanoformulations based on Cu-doped zeolitic imidazolate framework-8 (ZIF-8). Hydroxycamptothecin (HCPT), a clinical anti-tumor drug, was encapsulated into ZIF-8, which was subsequently coated with polydopamine (PDA) and red blood cell membrane. The as-fabricated biomimetic nanoformulations showed an enhanced cell uptake in vitro and the potential to prolong blood circulation in vivo, producing effective synergistic chemotherapy, chemodynamic therapy, and photothermal therapy under the 808 nm laser irradiation. Together, the biomimetic nanoformulations showed a prolonged blood circulation and evasion of immune recognition in vivo to provide a bio-inspired strategy which may have the potential for the multi-synergistic therapy of breast cancer.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Doxorrubicina , Biomimética , Fototerapia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Eritrócitos
18.
Biomed Microdevices ; 26(1): 9, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189892

RESUMO

There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.


Assuntos
Lidocaína , Polímeros , Humanos , Anestesia Local , Álcool de Polivinil , Povidona
19.
Int J Biol Macromol ; 259(Pt 2): 129140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199558

RESUMO

Plastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.9 wt% lignins with a recovery rate of 73.5 wt% achieved under optimum conditions at 180 °C with 50 % v/v ethanol. The extracted lignins were then incorporated into a starch matrix to create biocomposite films. ATR-FTIR analysis confirmed interactions between the starch matrix and extracted lignins, and XRD analysis showed the amorphous structure of lignins, reducing film crystallinity. The addition of 1 wt% of extracted lignins resulted in a 87 % reduction in oxygen permeability, a 25 % increase in the thermal stability of the film, and a 78 % enhancement in antioxidant. Furthermore, introducing 3 wt% lignins led to the lowest water vapor transmission rate, measuring 9.3 × 10-7 kg/s·m2. Morphological studies of the films demonstrated a homogeneous and continuous structure on both the surface and cross-sectional areas when the lignins content was below 7 wt%. These findings highlight the potential of using organosolv lignins derived from potato crop residues as a promising additive for developing eco-friendly films designed for sustainable food packaging.


Assuntos
Lignina , Solanum tuberosum , Lignina/química , Solanum tuberosum/química , Amido/química , Embalagem de Alimentos , Antioxidantes/química
20.
Small Methods ; 8(1): e2300930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806771

RESUMO

With the rise of engineered living materials (ELMs) as innovative, sustainable and smart systems for diverse engineering and biological applications, global interest in advancing ELMs is on the rise. Graphene-based nanostructures can serve as effective tools to fabricate ELMs. By using graphene-based materials as building units and microorganisms as the designers of the end materials, next-generation ELMs can be engineered with the structural properties of graphene-based materials and the inherent properties of the microorganisms. However, some challenges need to be addressed to fully take advantage of graphene-based nanostructures for the design of next-generation ELMs. This work covers the latest advances in the fabrication and application of graphene-based ELMs. Fabrication strategies of graphene-based ELMs are first categorized, followed by a systematic investigation of the advantages and disadvantages within each category. Next, the potential applications of graphene-based ELMs are covered. Moreover, the challenges associated with fabrication of next-generation graphene-based ELMs are identified and discussed. Based on a comprehensive overview of the literature, the primary challenge limiting the integration of graphene-based nanostructures in ELMs is nanotoxicity arising from synthetic and structural parameters. Finally, we present possible design principles to potentially address these challenges.


Assuntos
Grafite , Nanoestruturas , Grafite/toxicidade , Grafite/química , Nanoestruturas/efeitos adversos , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA