Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(8): 2313-2327, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38991546

RESUMO

Chimeric antigen receptor (CAR) T cells have made a tremendous impact in the clinic, but potent signaling through the CAR can be detrimental to treatment safety and efficacy. The use of protein degradation to control CAR signaling can address these issues in preclinical models. Existing strategies for regulating CAR stability rely on small molecules to induce systemic degradation. In contrast to small molecule regulation, genetic circuits offer a more precise method to control CAR signaling in an autonomous cell-by-cell fashion. Here, we describe a programmable protein degradation tool that adopts the framework of bioPROTACs, heterobifunctional proteins that are composed of a target recognition domain fused to a domain that recruits the endogenous ubiquitin proteasome system. We develop novel bioPROTACs that utilize a compact four-residue degron and demonstrate degradation of cytosolic and membrane protein targets using either a nanobody or synthetic leucine zipper as a protein binder. Our bioPROTACs exhibit potent degradation of CARs and can inhibit CAR signaling in primary human T cells. We demonstrate the utility of our bioPROTACs by constructing a genetic circuit to degrade the tyrosine kinase ZAP70 in response to recognition of a specific membrane-bound antigen. This circuit can disrupt CAR T cell signaling only in the presence of a specific cell population. These results suggest that bioPROTACs are powerful tools for expanding the CAR T cell engineering toolbox.


Assuntos
Proteólise , Receptores de Antígenos Quiméricos , Transdução de Sinais , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Transdução de Sinais/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Células HEK293 , Degrons
2.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405763

RESUMO

Chimeric antigen receptor (CAR) T cells have made a tremendous impact in the clinic, but potent signaling through the CAR can be detrimental to treatment safety and efficacy. The use of protein degradation to control CAR signaling can address these issues in pre-clinical models. Existing strategies for regulating CAR stability rely on small molecules to induce systemic degradation. In contrast to small molecule regulation, genetic circuits offer a more precise method to control CAR signaling in an autonomous, cell-by-cell fashion. Here, we describe a programmable protein degradation tool that adopts the framework of bioPROTACs, heterobifunctional proteins that are composed of a target recognition domain fused to a domain that recruits the endogenous ubiquitin proteasome system. We develop novel bioPROTACs that utilize a compact four residue degron and demonstrate degradation of cytosolic and membrane protein targets using either a nanobody or synthetic leucine zipper as a protein binder. Our bioPROTACs exhibit potent degradation of CARs and can inhibit CAR signaling in primary human T cells. We demonstrate the utility of our bioPROTACs by constructing a genetic circuit to degrade the tyrosine kinase ZAP70 in response to recognition of a specific membrane-bound antigen. This circuit is able to disrupt CAR T cell signaling only in the presence of a specific cell population. These results suggest that bioPROTACs are a powerful tool for expanding the cell engineering toolbox for CAR T cells.

3.
Science ; 370(6520): 1099-1104, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243890

RESUMO

Living cells often identify their correct partner or target cells by integrating information from multiple receptors, achieving levels of recognition that are difficult to obtain with individual molecular interactions. In this study, we engineered a diverse library of multireceptor cell-cell recognition circuits by using synthetic Notch receptors to transcriptionally interconnect multiple molecular recognition events. These synthetic circuits allow engineered T cells to integrate extra- and intracellular antigen recognition, are robust to heterogeneity, and achieve precise recognition by integrating up to three different antigens with positive or negative logic. A three-antigen AND gate composed of three sequentially linked receptors shows selectivity in vivo, clearing three-antigen tumors while ignoring related two-antigen tumors. Daisy-chaining multiple molecular recognition events together in synthetic circuits provides a powerful way to engineer cellular-level recognition.


Assuntos
Comunicação Celular/imunologia , Engenharia Celular , Receptores de Antígenos Quiméricos/imunologia , Receptores Notch/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores Notch/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA