Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 712: 135889, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050398

RESUMO

Persistent organic pollutants (POPs) contaminate pristine, alpine environments through long-range transport in the atmosphere and glacier trapping. To study variation in POPs levels in western Canada, we measured levels in the prey (fish) of osprey (Pandion haliaetus) during 1999-2004, and compared those to levels in eggs and chicks. Values in fish muscle (representing human consumption) correlated with whole carcasses (wildlife consumption) for all POPs, except toxaphene, allowing us to pool data. Biomagnification factors for osprey eggs were much higher than published values from Oregon, reflecting differences in local diet. We factored baseline-corrected food chain variation by using amino acid-specific analysis of osprey eggs, illustrating how top predators (ospreys) can indicate both ecosystem-wide baselines and contamination. Given that our biomagnification factors were so different from those for the same species from a nearby site, we argue that trophic magnification factors derived from baseline-corrected δ15N are likely a more accurate method for estimating contamination. Dichlorodiphenyltrichloroethane (ΣDDT) concentrations were greatest in rainbow trout from a small lake at 1800 m, and those levels exceeded wildlife and human health guidelines. Indeed, once sites with known agricultural inputs were eliminated, elevation, percent lipids and baseline-corrected δ15N (from amino acid specific isotope values) best predicted ΣDDT. Baseline-corrected, but not bulk, δ15N was the main predictor of polychlorinated biphenyls (ΣPCB). Total toxaphene was consistently the major contaminant after ΣPCB and ΣDDT in osprey eggs, and was present in many fish samples. We concluded that toxaphene arrived from long range deposition due to high proportions of Parlar 40-50 congeners. The only exception was Paul Lake, where toxaphene was used as a piscicide, with a high concentrations of the Hex-Sed and Hep-Sed congeners at that site. We conclude that long-range transport and trophic position, not melting glaciers, were important determinants of some legacy POPs in fish and wildlife in alpine Canada.


Assuntos
Falconiformes , Animais , Canadá , Monitoramento Ambiental , Poluentes Ambientais , Cadeia Alimentar , Oregon , Bifenilos Policlorados , Poluentes Químicos da Água
2.
Environ Sci Technol ; 46(17): 9681-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22876912

RESUMO

Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.


Assuntos
Ovos/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Falconiformes/sangue , Altitude , Animais , Canadá , Ecossistema , Falconiformes/crescimento & desenvolvimento , Camada de Gelo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA