Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7977): 112-119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648850

RESUMO

Several coastal ecosystems-most notably mangroves and tidal marshes-exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment1. The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs2. The persistence of these ecosystems under high rates of RSLR is contested3. Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr-1 and highly likely at 7 mm yr-1 of RSLR. As rates of RSLR exceed 7 mm yr-1, the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr-1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world's mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr-1. Meeting the Paris agreement targets would minimize disruption to coastal ecosystems.


Assuntos
Aquecimento Global , Temperatura , Áreas Alagadas , Avicennia/fisiologia , Sequestro de Carbono , Recifes de Corais , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Animais
2.
Commun Biol ; 6(1): 150, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739308

RESUMO

Rapid sea-level rise between the Last Glacial Maximum (LGM) and the mid-Holocene transformed the Southeast Asian coastal landscape, but the impact on human demography remains unclear. Here, we create a paleogeographic map, focusing on sea-level changes during the period spanning the LGM to the present-day and infer the human population history in Southeast and South Asia using 763 high-coverage whole-genome sequencing datasets from 59 ethnic groups. We show that sea-level rise, in particular meltwater pulses 1 A (MWP1A, ~14,500-14,000 years ago) and 1B (MWP1B, ~11,500-11,000 years ago), reduced land area by over 50% since the LGM, resulting in segregation of local human populations. Following periods of rapid sea-level rises, population pressure drove the migration of Malaysian Negritos into South Asia. Integrated paleogeographic and population genomic analysis demonstrates the earliest documented instance of forced human migration driven by sea-level rise.


Assuntos
Migração Humana , Elevação do Nível do Mar , Humanos , Ásia Meridional , Dinâmica Populacional , Genômica
3.
Nat Commun ; 12(1): 1841, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758184

RESUMO

Sea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0-2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr-1). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between -0.3 and 0.4 mm yr-1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr-1.

4.
Nat Commun ; 9(1): 2687, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002365

RESUMO

Tidal marshes rank among Earth's vulnerable ecosystems, which will retreat if future rates of relative sea-level rise (RSLR) exceed marshes' ability to accrete vertically. Here, we assess the limits to marsh vulnerability by analyzing >780 Holocene reconstructions of tidal marsh evolution in Great Britain. These reconstructions include both transgressive (tidal marsh retreat) and regressive (tidal marsh expansion) contacts. The probability of a marsh retreat was conditional upon Holocene rates of RSLR, which varied between -7.7 and 15.2 mm/yr. Holocene records indicate that marshes are nine times more likely to retreat than expand when RSLR rates are ≥7.1 mm/yr. Coupling estimated probabilities of marsh retreat with projections of future RSLR suggests a major risk of tidal marsh loss in the twenty-first century. All of Great Britain has a >80% probability of a marsh retreat under Representative Concentration Pathway (RCP) 8.5 by 2100, with areas of southern and eastern England achieving this probability by 2040.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA