Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(19): 21545-21556, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764647

RESUMO

Functionalization of room temperature liquids based on disubstituted imidazolium ionic liquids represents a promising avenue for tailoring their tunable physicochemical properties and expanding their potential application as green solvents to capture carbon dioxide as a greenhouse gas. In this work, new hydroxyl functionalized imidazolium ionic liquids were prepared from condensation of ethanolamine with glyoxal and formalin in the presence of acetic acid as catalyst. The chemical modification of the hydroxyl groups with epichlorohydrine added new hydroxylpropanoxychloride groups on the imidazolium cation that were quaternized with N-methylimidazolium chloride to produce new imidazolium acetate ionic liquids. The chemical structures, thermal stability, and thermal characteristics of the prepared imidazolium ionic liquids were evaluated. The incorporation of functionalized 1-chloro-2-hydroxypropanoxy and N-methylimidazolium chloride groups into the chemical structure of the imidazolium cations improved the thermal properties of the prepared ionic liquids. The application of the prepared ionic liquids as pure or mixed solvents with saline water to capture CO2 under atmospheric and 55.2 bar pressures was evaluated at room temperature. The data indicate that the prepared ionic liquids have superior CO2 adsorption/desorption rate in short time during 30 and 15 min and that their CO2 capture efficiency increased from 6.2 to 16.8 molCO2/kgIIL and from 9.1 to 20.0 molCO2/kgIIL at atmospheric and 55.2 bar pressures, respectively.

2.
R Soc Open Sci ; 11(5): 231229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721132

RESUMO

4,6-Bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenyl-1,3,5-triazin-2-amine (PTA-1), N-(4-bromophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine (PTA-2) and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine (PTA-3) were synthesized and characterized. Their corrosion inhibition of carbon C-steel in 0.25 M H2SO4 was studied by electrochemical impedance. The inhibition efficiency (IE%) of triazine was superior due to the cumulative inhibition of triazine core structure and pyrazole motif. Potentiodynamic polarizations suggested that s-triazine derivatives behave as mixed type inhibitors. The IE% values were 96.5% and 93.4% at 120 ppm for inhibitor PTA-2 and PTA-3 bearing -Br and -OCH3 groups on aniline, respectively. While PTA-1 without an electron donating group showed only 79.0% inhibition at 175 ppm. The adsorption of triazine derivatives followed Langmuir and Frumkin models. The values of adsorption equilibrium constant K°ads and free energy change ΔG°ads revealed that adsorption of inhibitor onto steel surface was favoured. A corrosion inhibition mechanism was proposed suggesting the presence of physical and chemical interactions. Density functional theory computational investigation corroborated nicely with the experimental results. Monte Carlo simulation revealed that the energy associated with the metal/adsorbate arrangement dE ads/dN i, for both forms of PTA-2 and PTA-3 with electron donating groups (-439.73 and -436.62 kcal mol-1) is higher than that of PTA-1 molecule (-428.73 kcal mol-1). This aligned with experimental inhibition efficiency results.

3.
ACS Appl Bio Mater ; 6(12): 5349-5359, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37957165

RESUMO

Ionic substitution can effectively activate the surface of hydroxyapatite (HA) for bone repair and regeneration processes. Therefore in this study, magnesium (Mg)-, zinc (Zn)-, and Mg/Zn-codoped HA was prepared by a hydrothermal method. The results of experimental and first-principles calculations verify the existence of Mg and Zn ions in the HA structure by altering cell parameters, crystallinity, and particle size. The results also showed that Mg and Zn are actively accommodated at the Ca(1) and Ca(2) positions, which not only inhibit HA formation but also promote calcium-deficient HA, and when the codoping content increased to 10%Mg and 10%Zn, the HA transformed completely to the whitlockite phase. Furthermore, the impact of codoping on biocompatibility was examined by employing MC3T3 cells. The in vitro study revealed that 5%Mg and 5%Zn single and -codoped HA promoted the proliferation of MC3T3 cells and 5%Mg-doped and -codoped HA stimulated MC3T3 cell differentiation, while 5%Zn-doped and -codoped HA revealed worthy antibacterial properties. Overall, the obtained results demonstrate that cosubstituted HA (5%Mg and 5%Zn) is promising, which not only eradicates bacteria (Escherichia coli and Staphylococcus aureus) but also induces bone regeneration. These findings suggest that 5%Mg and 5%Zn binary-substituted HA is a very promising biomaterial for hard tissue scaffolds and bone repair.


Assuntos
Durapatita , Zinco , Durapatita/farmacologia , Durapatita/química , Zinco/farmacologia , Zinco/química , Magnésio/farmacologia , Magnésio/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química
4.
Heliyon ; 9(2): e13248, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825185

RESUMO

F e S 2 pyrite is one of the most interesting photovoltaic materials with low-cost and natural abundance but with small band gap of 0.95 eV. In the present work, we show the feasibility of increases band gap was determined by Zinc alloying of Iron pyrite. We showed that we can increase the band gap of F e S 2 pyrite to 1.15 e V by theoretical calculation and to 1.16 e V using experimental method, by just adding a very small amount of Zinc ( 1 % ) . We prepared our samples by chemical vapor transport technic and we utilized the technic of linear muffin-tin orbital method in the atomic-sphere approximation (LMTO-ASA). The effect of Zinc alloyed Iron pyrite were examined by transmission electron micrograph TEM, XRD, Raman spectroscopy and optical characterization.

5.
Front Chem ; 10: 1078163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505739

RESUMO

A series of pyrazolyl-s-triazine compounds with an indole motif was designed, synthesized, and evaluated for anticancer activity targeting dual EGFR and CDK-2 inhibitors. The compounds were tested for cytotoxicity using the MTT assay. Compounds 3h, 3i, and 3j showed promising cytotoxic activity against two cancer cell lines, namely A549, MCF-7, and HDFs (non-cancerous human dermal fibroblasts). Compound 3j was the most active candidate against A549, with an IC50 of 2.32 ± 0.21 µM. Compounds 3h and 3i were found to be the most active hybrids against MCF-7 and HDFs, with an IC50 of 2.66 ± 0.26 µM and 3.78 ± 0.55 µM, respectively. Interestingly, 3i showed potent EGFR inhibition, with an IC50 of 34.1 nM compared to Erlotinib (IC50 = 67.3 nM). At 10 µM, this candidate caused 93.6% and 91.4% of EGFR and CDK-2 inhibition, respectively. Furthermore, 3i enhanced total lung cancer cell apoptosis 71.6-fold (43.7% compared to 0.61% for the control). Given the potent cytotoxicity exerted by 3i through apoptosis-mediated activity, this compound emerges as a promising target-oriented anticancer agent.

6.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142242

RESUMO

During the past two decades, the world has witnessed the emergence of various SARS-CoV-2 variants with distinct mutational profiles influencing the global health, economy, and clinical aspects of the COVID-19 pandemic. These variants or mutants have raised major concerns regarding the protection provided by neutralizing monoclonal antibodies and vaccination, rates of virus transmission, and/or the risk of reinfection. The newly emerged Omicron, a genetically distinct lineage of SARS-CoV-2, continues its spread in the face of rising vaccine-induced immunity while maintaining its replication fitness. Efforts have been made to improve the therapeutic interventions and the FDA has issued Emergency Use Authorization for a few monoclonal antibodies and drug treatments for COVID-19. However, the current situation of rapidly spreading Omicron and its lineages demands the need for effective therapeutic interventions to reduce the COVID-19 pandemic. Several experimental studies have indicated that the FDA-approved monoclonal antibodies are less effective than antiviral drugs against the Omicron variant. Thus, in this study, we aim to identify antiviral compounds against the Spike protein of Omicron, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor and facilitates virus invasion. Initially, docking-based virtual screening of the in-house database was performed to extract the potential hit compounds against the Spike protein. The obtained hits were optimized by DFT calculations to determine the electronic properties and molecular reactivity of the compounds. Further, MD simulation studies were carried out to evaluate the dynamics of protein-ligand interactions at an atomistic level in a time-dependent manner. Collectively, five compounds (AKS-01, AKS-02, AKS-03, AKS-04, and AKS-05) with diverse scaffolds were identified as potential hits against the Spike protein of Omicron. Our study paves the way for further in vitro and in vivo studies.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais , Anticorpos Antivirais , Antivirais/farmacologia , Quimioinformática , Humanos , Ligantes , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
7.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015186

RESUMO

Here, we described the synthesis of novel pyrazole-s-triazine derivatives via an easy one-pot procedure for the reaction of ß-dicarbonyl compounds (ethylacetoacetate, 5,5-dimethyl-1,3-cyclohexadione or 1,3-cyclohexadionone) with N,N-dimethylformamide dimethylacetal, followed by addition of 2-hydrazinyl-4,6-disubstituted-s-triazine either in ethanol-acetic acid or neat acetic acid to afford a novel pyrazole and pyrazole-fused cycloalkanone systems. The synthetic protocol proved to be efficient, with a shorter reaction time and high chemical yield with broad substrates. The new pyrazolyl-s-triazine derivatives were tested against the following cell lines: MCF-7 (breast cancer); MDA-MB-231 (triple-negative breast cancer); U-87 MG (glioblastoma); A549 (non-small cell lung cancer); PANC-1 (pancreatic cancer); and human dermal fibroblasts (HDFs). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all the cell lines tested. However, compounds 7d, 7f and 7c, which all have a piperidine or morpholine moiety with one aniline ring or two aniline rings in their structures, were the most effective. Compounds 7f and 7d showed potent EGFR inhibitory activity with IC50 values of 59.24 and 70.3 nM, respectively, compared to Tamoxifen (IC50 value of 69.1 nM). Compound 7c exhibited moderate activity, with IC50 values of 81.6 nM. Interestingly, hybrids 7d and 7f exerted remarkable PI3K/AKT/mTOR inhibitory activity with 0.66/0.82/0.80 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to 4.39, 37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34 and 57.6 ng/mL in the 7f-treatment compared to the untreated control.

8.
ACS Omega ; 7(28): 24858-24870, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874229

RESUMO

Here, we synthesized a newseries of mono- and bis(dimethylpyrazolyl)-s-triazine derivatives. The synthetic methodology involved the reaction of different mono- and dihydrazinyl-s-triazine derivatives with acetylacetone in the presence of triethylamine to produce the corresponding target products in high yield and purity. The antiproliferative activity of the novel mono- and bis(dimethylpyrazolyl)-s-triazine derivatives was studied against three cancer cell lines, namely, MCF-7, HCT-116, and HepG2. N-(4-Bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-morpholino-1,3,5-triazin-2-amine 4f, N-(4-chlorophenyl)-4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-amine 5c, and 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-N-(4-methoxyphenyl)-1,3,5-triazin-2-amine 5d showed promising activity against these cancer cells: 4f [(IC50 = 4.53 ± 0.30 µM (MCF-7); 0.50 ± 0.080 µM (HCT-116); and 3.01 ± 0.49 µM (HepG2)]; 5d [(IC50 = 3.66 ± 0.96 µM (HCT-116); and 5.42 ± 0.82 µM (HepG2)]; and 5c [(IC50 = 2.29 ± 0.92 µM (MCF-7)]. Molecular docking studies revealed good binding affinity with the receptor targeting EGFR/PI3K/AKT/mTOR signaling cascades. Compound 4f exhibited potent EGFR inhibitory activity with an IC50 value of 61 nM compared to that of Tamoxifen (IC50 value of 69 nM), with EGFR inhibition of 83 and 84%, respectively, at a concentration of 10 µM. Interestingly, 4f showed remarkable PI3K/AKT/mTOR inhibitory activity with 0.18-, 0.27-, and 0.39-fold decrease in their concentration (reduction in controls from 6.64, 45.39, and 86.39 ng/mL to 1.24, 12.35, and 34.36 ng/mL, respectively). Hence, the synthetic 1,3,5-triazine derivative 4f exhibited promising antiproliferative activity in HCT-116 cells through apoptosis induction by targeting the EGFR and its downstream pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA