Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Oncol ; 12: 786451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186734

RESUMO

BACKGROUND: Despite treatment with high-dose chemotherapy followed by autologous stem cell transplantation (AHCT), patients with multiple myeloma (MM) invariably relapse. Molecular residual disease (MRD)-negativity post-AHCT has emerged as an important prognostic marker predicting the duration of remission. Current techniques for MRD assessment involve bone marrow (BM) aspirate sampling, which is invasive, subject to sample variability and is limited by spatial heterogeneity. We compared the performance of a non-invasive, circulating tumor DNA (ctDNA)-based MRD assay with multiparameter flow cytometry (MFC) of marrow aspirate to predict relapse in AHCT recipients with MM. METHODS: MRD assessment using ctDNA was retrospectively analyzed on 80 plasma samples collected at different time points from 28 patients, post-AHCT. MFC was used to assess MRD from BM biopsy. Individual archived BM aspirate slides or formalin-fixed paraffin-embedded slides from the time of MM diagnosis and matched blood were used to assess MRD at 3 months, post-AHCT, using a personalized, tumor-informed ctDNA assay. RESULTS: ctDNA was detectable in 70.8% (17/24) of pre-AHCT patients and 53.6% (15/28) of post-AHCT patients (3-month time point). Of the 15 post-AHCT ctDNA-positive patients, 14 relapsed on follow-up. The median PFS for ctDNA-positive patients was 31 months, and that for ctDNA-negative patients was 84 months (HR: 5.6; 95%CI: 1.8-17;p=0.0003). No significant difference in PFS was observed in patients stratified by MFC-based MRD status (HR 1.2; 95%CI: 0.3-3.4;p=0.73). The positive predictive value for ctDNA was also significantly higher than MFC (93.3% vs. 68.4%). CONCLUSIONS: This study demonstrates tumor-informed ctDNA analysis is strongly predictive of MM relapse.

2.
JCO Precis Oncol ; 52021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34327297

RESUMO

PURPOSE: More than 50% of patients with stage IV colorectal cancer (metastatic colorectal cancer [mCRC]) relapse postresection. The efficacy of postoperative systemic treatment is limited in this setting. Thus, these patients would greatly benefit from the use of a reliable prognostic biomarker, such as circulating tumor DNA (ctDNA) to identify minimal or molecular residual disease (MRD). PATIENTS AND METHODS: We analyzed a cohort of 112 patients with mCRC who had undergone metastatic resection with curative intent as part of the PREDATOR clinical trial. The study evaluated the prognostic value of ctDNA, correlating MRD status postsurgery with clinical outcomes by using a personalized and tumor-informed ctDNA assay (bespoke multiple PCR, next-generation sequencing assay). Postresection, systemic therapy was given to 39.2% of the patients at the discretion of the treating physician. RESULTS: Postsurgical, MRD positivity was observed in 54.4% (61 of 112) of patients, of which 96.7% (59 of 61) progressed at the time of data cutoff (hazard ratio [HR]: 5.8; 95% CI, 3.5 to 9.7; P < .001). MRD-positive status was also associated with an inferior overall survival: HR: 16.0; 95% CI, 3.9 to 68.0; P < .001. At the time of analyses, 96% (49 of 51) of patients were alive in the MRD-negative arm compared with 52.4% (32 of 61) in the MRD-positive arm. Patients who did not receive systemic therapy and were MRD-negative in the combined ctDNA analysis at two time points had an overall survival of 100%. In the multivariate analysis, ctDNA-based MRD status was the most significant prognostic factor associated with disease-free survival (HR: 5.78; 95% CI, 3.34 to 10.0; P < .001). CONCLUSION: This study confirms that in mCRC undergoing resection of metastases, postoperative MRD analysis is a strong prognostic biomarker. It holds promises for being implemented in clinical decision making, informing clinical trial design, and further translational research.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , DNA Tumoral Circulante/genética , Neoplasias Colorretais/genética , Humanos , Recidiva Local de Neoplasia/genética , Neoplasia Residual/genética , Prognóstico
3.
Nat Cancer ; 1(9): 873-881, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-35121950

RESUMO

Immune checkpoint blockade (ICB) provides clinical benefit to a subset of patients with cancer. However, existing biomarkers do not reliably predict treatment response across diverse cancer types. Limited data exist to show how serial circulating tumor DNA (ctDNA) testing may perform as a predictive biomarker in patients receiving ICB. We conducted a prospective phase II clinical trial to assess ctDNA in five distinct cohorts of patients with advanced solid tumors treated with pembrolizumab (NCT02644369). We applied bespoke ctDNA assays to 316 serial plasma samples obtained at baseline and every three cycles from 94 patients. Baseline ctDNA concentration correlated with progression-free survival, overall survival, clinical response and clinical benefit. This association became stronger when considering ctDNA kinetics during treatment. All 12 patients with ctDNA clearance during treatment were alive with median 25 months follow up. This study demonstrates the potential for broad clinical utility of ctDNA-based surveillance in patients treated with ICB.


Assuntos
DNA Tumoral Circulante , Neoplasias , Anticorpos Monoclonais Humanizados , Biomarcadores , DNA Tumoral Circulante/genética , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos
4.
JAMA Oncol ; 5(8): 1124-1131, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070691

RESUMO

IMPORTANCE: Novel sensitive methods for detection and monitoring of residual disease can improve postoperative risk stratification with implications for patient selection for adjuvant chemotherapy (ACT), ACT duration, intensity of radiologic surveillance, and, ultimately, outcome for patients with colorectal cancer (CRC). OBJECTIVE: To investigate the association of circulating tumor DNA (ctDNA) with recurrence using longitudinal data from ultradeep sequencing of plasma cell-free DNA in patients with CRC before and after surgery, during and after ACT, and during surveillance. DESIGN, SETTING, AND PARTICIPANTS: In this prospective, multicenter cohort study, ctDNA was quantified in the preoperative and postoperative settings of stages I to III CRC by personalized multiplex, polymerase chain reaction-based, next-generation sequencing. The study enrolled 130 patients at the surgical departments of Aarhus University Hospital, Randers Hospital, and Herning Hospital in Denmark from May 1, 2014, to January 31, 2017. Plasma samples (n = 829) were collected before surgery, postoperatively at day 30, and every third month for up to 3 years. MAIN OUTCOMES AND MEASURES: Outcomes were ctDNA measurement, clinical recurrence, and recurrence-free survival. RESULTS: A total of 130 patients with stages I to III CRC (mean [SD] age, 67.9 [10.1] years; 74 [56.9%] male) were enrolled in the study; 5 patients discontinued participation, leaving 125 patients for analysis. Preoperatively, ctDNA was detectable in 108 of 122 patients (88.5%). After definitive treatment, longitudinal ctDNA analysis identified 14 of 16 relapses (87.5%). At postoperative day 30, ctDNA-positive patients were 7 times more likely to relapse than ctDNA-negative patients (hazard ratio [HR], 7.2; 95% CI, 2.7-19.0; P < .001). Similarly, shortly after ACT ctDNA-positive patients were 17 times (HR, 17.5; 95% CI, 5.4-56.5; P < .001) more likely to relapse. All 7 patients who were ctDNA positive after ACT experienced relapse. Monitoring during and after ACT indicated that 3 of the 10 ctDNA-positive patients (30.0%) were cleared by ACT. During surveillance after definitive therapy, ctDNA-positive patients were more than 40 times more likely to experience disease recurrence than ctDNA-negative patients (HR, 43.5; 95% CI, 9.8-193.5 P < .001). In all multivariate analyses, ctDNA status was independently associated with relapse after adjusting for known clinicopathologic risk factors. Serial ctDNA analyses revealed disease recurrence up to 16.5 months ahead of standard-of-care radiologic imaging (mean, 8.7 months; range, 0.8-16.5 months). Actionable mutations were identified in 81.8% of the ctDNA-positive relapse samples. CONCLUSIONS AND RELEVANCE: Circulating tumor DNA analysis can potentially change the postoperative management of CRC by enabling risk stratification, ACT monitoring, and early relapse detection.

5.
J Clin Oncol ; 37(18): 1547-1557, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31059311

RESUMO

PURPOSE: Novel sensitive methods for early detection of relapse and for monitoring therapeutic efficacy may have a huge impact on risk stratification, treatment, and ultimately outcome for patients with bladder cancer. We addressed the prognostic and predictive impact of ultra-deep sequencing of cell-free DNA in patients before and after cystectomy and during chemotherapy. PATIENTS AND METHODS: We included 68 patients with localized advanced bladder cancer. Patient-specific somatic mutations, identified by whole-exome sequencing, were used to assess circulating tumor DNA (ctDNA) by ultra-deep sequencing (median, 105,000×) of plasma DNA. Plasma samples (n = 656) were procured at diagnosis, during chemotherapy, before cystectomy, and during surveillance. Expression profiling was performed for tumor subtype and immune signature analyses. RESULTS: Presence of ctDNA was highly prognostic at diagnosis before chemotherapy (hazard ratio, 29.1; P = .001). After cystectomy, ctDNA analysis correctly identified all patients with metastatic relapse during disease monitoring (100% sensitivity, 98% specificity). A median lead time over radiographic imaging of 96 days was observed. In addition, for high-risk patients (ctDNA positive before or during treatment), the dynamics of ctDNA during chemotherapy was associated with disease recurrence (P = .023), whereas pathologic downstaging was not. Analysis of tumor-centric biomarkers showed that mutational processes (signature 5) were associated with pathologic downstaging (P = .024); however, no significant correlation for tumor subtypes, DNA damage response mutations, and other biomarkers was observed. Our results suggest that ctDNA analysis is better associated with treatment efficacy compared with other available methods. CONCLUSION: ctDNA assessment for early risk stratification, therapy monitoring, and early relapse detection in bladder cancer is feasible and provides a basis for clinical studies that evaluate early therapeutic interventions.


Assuntos
Ácidos Nucleicos Livres/sangue , Detecção Precoce de Câncer , Feminino , Humanos , Estudos Longitudinais , Masculino , Metástase Neoplásica , Recidiva Local de Neoplasia , Prognóstico , Recidiva , Neoplasias da Bexiga Urinária/patologia
6.
Clin Cancer Res ; 25(14): 4255-4263, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30992300

RESUMO

PURPOSE: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer. EXPERIMENTAL DESIGN: Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n = 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X). RESULTS: Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling. CONCLUSIONS: This study demonstrates that patient-specific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Recidiva Local de Neoplasia/diagnóstico , Medicina de Precisão , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/secundário , DNA Tumoral Circulante/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Prognóstico , Estudos Prospectivos
7.
Nat Biotechnol ; 24(9): 1132-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16964227

RESUMO

External RNA controls (ERCs), although important for microarray assay performance assessment, have yet to be fully implemented in the research community. As part of the MicroArray Quality Control (MAQC) study, two types of ERCs were implemented and evaluated; one was added to the total RNA in the samples before amplification and labeling; the other was added to the copyRNAs (cRNAs) before hybridization. ERC concentration-response curves were used across multiple commercial microarray platforms to identify problematic assays and potential sources of variation in the analytical process. In addition, the behavior of different ERC types was investigated, resulting in several important observations, such as the sample-dependent attributes of performance and the potential of using these control RNAs in a combinatorial fashion. This multiplatform investigation of the behavior and utility of ERCs provides a basis for articulating specific recommendations for their future use in evaluating assay performance across multiple platforms.


Assuntos
Análise de Falha de Equipamento/métodos , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/normas , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/normas , RNA/análise , RNA/genética , Algoritmos , RNA/normas , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA