Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Magn Reson Med ; 92(2): 869-880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38469911

RESUMO

PURPOSE: Ultra-high field MRI offers unprecedented detail for noninvasive visualization of the human brain. However, brain imaging is challenging at 7T due to the B 1 + $$ {}_1^{+} $$ field inhomogeneity, which results in signal intensity drops in temporal lobes and a bright region in the brain center. This study aims to evaluate using a metasurface to improve brain imaging at 7T and simplify the investigative workflow. METHODS: Two flexible metasurfaces comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on an ultra-thin substrate were optimized for brain imaging and implemented via PCB. We considered two setups: (1) two metasurfaces located near the temporal lobes and (2) one metasurface placed near the occipital lobe. The effect of metasurface placement on the transmit efficiency and specific absorption rate was evaluated via electromagnetic simulation studies with voxelized models. In addition, their impact on signal-to-noise ratio (SNR) and diagnostic image quality was assessed in vivo for two male and one female volunteers. RESULTS: Placement of metasurfaces near the regions of interest led to an increase in homogeneity of the transmit field by 5% and 10.5% in the right temporal lobe and occipital lobe for a male subject, respectively. SAR efficiency values changed insignificantly, dropping by less than 8% for all investigated setups. In vivo studies also confirmed the numerically predicted improvement in field distribution and receive sensitivity in the desired ROI. CONCLUSION: Optimized metasurfaces enable homogenizing transmit field distribution in the brain at 7T. The proposed lightweight and flexible structure can potentially provide MR examination with higher diagnostic value images.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Masculino , Feminino , Desenho de Equipamento , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador , Adulto , Algoritmos
2.
J Magn Reson ; 359: 107627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280267

RESUMO

This study comprehensively assesses radiofrequency (RF) volumetric wireless coils utilizing artificial materials for clinical breast MRI. In particular, we evaluated the transmit efficiency, RF safety, and homogeneity of magnetic field amplitude distribution for four structures electromagnetically coupled with a whole-body birdcage coil: extremely high permittivity ceramic coil, solenoid coil, Helmholtz coil, and metamaterial-inspired coil based on periodically coupled split-loop resonators. These coils exhibit favorable attributes, including lightweight construction, compactness, cost-effectiveness, and ease of manufacturing. The results of this study demonstrated that the metamaterial-inspired coil outperforms other wireless coils considered for addressing a specific problem in terms of the set of characteristics. In particular, the metamaterial-inspired coil achieved 85% and 88% homogeneity in magnetic field amplitude distribution at 3 T and 1.5 T MRI, respectively. Also, the 1.5 T metamaterial-inspired coil demonstrated the best performance, increasing the efficiency gain of the birdcage coil by 4.93 times and improving RF safety by 2.96 times. This research explains the limitations and peculiarity of utilizing the volumetric wireless coils in 1.5 and 3 T MRI systems.

3.
J Magn Reson ; 348: 107390, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774714

RESUMO

In this work, we propose an application of high permittivity materials (HPMs) to improve functional magnetic resonance imaging (fMRI) at 1.5 T, increasing the receive (Rx) sensitivity of a commercial multi-channel head coil. To evaluate the transmit efficiency, specific absorption rate (SAR), and the signal-to-noise ratio (SNR) changes introduced by the HPMs with relative permittivity of 4500, we considered the following configurations in simulation: a whole-body birdcage coil and an Rx-only multi-channel head coil with and without the HPM blocks in the presence of a homogeneous head phantom or a human body model. Experimental studies were also performed with a phantom and with volunteers. Seven healthy volunteers enrolled in a prospective study of fMRI activation in the motor cortex with and without HPMs. fMRI data were analyzed using group-level paired T-tests between acquisitions with and without HPM blocks. Both electromagnetic simulations and experimental measurements showed ∼25% improvement in the Rx sensitivity of a commercial head coil in the areas of interest when HPM blocks were placed in close proximity. It increased the detected motor cortex fMRI activation volume by an average of 56%, thus resulting in more sensitive functional imaging at 1.5 T.


Assuntos
Cerâmica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Desenho de Equipamento , Simulação por Computador , Razão Sinal-Ruído , Imagens de Fantasmas
4.
Magn Reson Med ; 89(3): 1251-1264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336799

RESUMO

PURPOSE: Development of a novel quadrature inductively driven transceive wireless coil for breast MRI at 1.5 T. METHODS: A quadrature wireless coil (HHMM-coil) design has been developed as a combination of two linearly polarized coils: a pair of 'metasolenoid' coils (MM-coil) and a pair of Helmholtz-type coils (HH-coil). The MM-coil consisted of an array of split-loop resonators. The HH-coil design included two electrically connected flat spirals. All the wireless coils were coupled to a whole-body birdcage coil. The HHMM-coil was studied and compared to the linear coils in terms of transmit and SAR efficiencies via numerical simulations. A prototype of HHMM-coil was built and tested on a 1.5 T scanner in a phantom and healthy volunteer. We also proposed an extended design of the HHMM-coil and compared its performance to a dedicated breast array. RESULTS: Numerical simulations of the HHMM-coil with a female voxel model have shown more than a 2.5-fold increase in transmit efficiency and a 1.7-fold enhancement of SAR efficiency compared to the linearly polarized coils. Phantom and in vivo imaging showed good agreement with the numerical simulations. Moreover, the HHMM-coil provided good image quality, visualizing all areas of interest similar to a multichannel breast array with a 32% reduction in signal-to-noise ratio. CONCLUSION: The proposed quadrature HHMM-coil allows the B 1 + $$ {\mathrm{B}}_1^{+} $$ -field to be significantly better focused in the region-of-interest compared to the linearly polarized coils. Thus, the HHMM-coil provides high-quality breast imaging on a 1.5 T scanner using a whole-body birdcage coil for transmit and receive.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Voluntários Saudáveis , Desenho de Equipamento
5.
MAGMA ; 35(6): 875-894, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35471464

RESUMO

This article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple "dielectric pads" for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Cerâmica , Espectroscopia de Ressonância Magnética
6.
J Magn Reson ; 339: 107209, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35397309

RESUMO

This work performs a detailed assessment of radiofrequency (RF) safety and imaging performance of a volumetric wireless coil based on periodically coupled split-loop resonators (SLRs) for 1.5 T wrist MRI versus a commercially available transceive extremity coil. In particular, we evaluated the transmit efficiency and RF safety for three setups: a whole-body birdcage coil, a transceive extremity birdcage coil, and a volumetric wireless coil inductively coupled to the whole-body birdcage coil. The imaging performance of the two latter setups was studied experimentally for nine subjects. The signal-to-noise ratio (SNR) of the images acquired with several standard pulse sequences for osteoarthritis wrist imaging was assessed. Application of the wireless coil significantly improved the specific absorption rate (SAR) efficiency of the whole-body birdcage coil, with at least 4.3-fold and 7.6-fold improvement of local and global SAR efficiencies, respectively. This setup also outperformed the transceive extremity coil in terms of SNR (up to 1.40-fold gain) with a moderate (11%) reduction of the local SAR efficiency.


Assuntos
Imageamento por Ressonância Magnética , Punho , Desenho de Equipamento , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Punho/diagnóstico por imagem
7.
Magn Reson Med ; 87(1): 496-508, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314033

RESUMO

PURPOSE: Radiofrequency field inhomogeneity is a significant issue in imaging large fields of view in high- and ultrahigh-field MRI. Passive shimming with coupled coils or dielectric pads is the most common approach at 3 T. We introduce and test light and compact metasurface, providing the same homogeneity improvement in clinical abdominal imaging at 3 T as a conventional dielectric pad. METHODS: The metasurface comprising a periodic structure of copper strips and parallel-plate capacitive elements printed on a flexible polyimide substrate supports propagation of slow electromagnetic waves similar to a high-permittivity slab. We compare the metasurface operating inside a transmit body birdcage coil to the state-of-the-art pad by numerical simulations and in vivo study on healthy volunteers. RESULTS: Numerical simulations with different body models show that the local minimum of B1+ causing a dark void in the abdominal domain is removed by the metasurface with comparable resulting homogeneity as for the pad with decreasing maximum and whole-body SAR values. In vivo results confirm similar homogeneity improvement and demonstrate the stability to body mass index. CONCLUSION: The light, flexible, and inexpensive metasurface can replace a relatively heavy and expensive pad based on the aqueous suspension of barium titanate in abdominal imaging at 3 T.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Abdome/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
8.
J Magn Reson ; 322: 106877, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278812

RESUMO

In this work, we propose an application of a metamaterial inspired volumetric wireless coil (WLC) based on coupled split-loop resonators for targeted breast MRI at 1.5 T. Due to strong electromagnetic coupling with the body coil, the metamaterial inspired WLC locally focuses radiofrequency (RF) magnetic flux in the target region, thus improving both transmit and receive performance of the external body coil. This leads to substantial enhancement in local transmit efficiency and improvement of RF safety. Phantom images showed a tenfold increase of signal-to-noise ratio (SNR) in the region-of-interest (ROI) and, at the same time, an almost 50-fold reduction in transmit power relative to the same body coil used alone.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Feminino , Humanos , Imagens de Fantasmas
9.
J Magn Reson ; 320: 106835, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065392

RESUMO

High-permittivity dielectric pads, i.e., thin, flexible slabs, usually consisting of mixed ceramic powders and liquids, have been previously shown to increase the magnetic field at high and ultra high-fields in regions of low efficiency of transmit coils, thus improving the homogeneity of images. However, their material parameters can change with time, and some materials they contain are bio incompatible. This article presents an alternative approach replacing ceramic mixtures with a low-cost and stable artificial dielectric slab. The latter comprises a stack of capacitive grids realized using multiple printed-circuit boards. Results in this article show that the proposed artificial dielectric structure can obtain the same increase in the local transmit radiofrequency magnetic field distribution in a head phantom at 7 T as the conventional dielectric pad.

10.
Nat Commun ; 11(1): 3840, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737293

RESUMO

Currently, human magnetic resonance (MR) examinations are becoming highly specialized with a pre-defined and often relatively small target in the body. Conventionally, clinical MR equipment is designed to be universal that compromises its efficiency for small targets. Here, we present a concept for targeted clinical magnetic resonance imaging (MRI), which can be directly integrated into the existing clinical MR systems, and demonstrate its feasibility for breast imaging. The concept comprises spatial redistribution and passive focusing of the radiofrequency magnetic flux with the aid of an artificial resonator to maximize the efficiency of a conventional MR system for the area of interest. The approach offers the prospect of a targeted MRI and brings novel opportunities for high quality specialized MR examinations within any existing MR system.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Cerâmica/efeitos da radiação , Espectroscopia Dielétrica/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Cerâmica/química , Espectroscopia Dielétrica/instrumentação , Radiação Eletromagnética , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Razão Sinal-Ruído
11.
J Magn Reson ; 291: 47-52, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29702361

RESUMO

Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM11). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design.

12.
Magn Reson Med ; 80(4): 1726-1737, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29427296

RESUMO

PURPOSE: Design and characterization of a new inductively driven wireless coil (WLC) for wrist imaging at 1.5 T with high homogeneity operating due to focusing the B1 field of a birdcage body coil. METHODS: The WLC design has been proposed based on a volumetric self-resonant periodic structure of inductively coupled split-loop resonators with structural capacitance. The WLC was optimized and studied regarding radiofrequency fields and interaction to the birdcage coil (BC) by electromagnetic simulations. The manufactured WLC was characterized by on-bench measurements and in vivo and phantom study in comparison to a standard cable-connected receive-only coil. RESULTS: The WLC placed into BC gave the measured B1+ increase of the latter by 8.6 times for the same accepted power. The phantom and in vivo wrist imaging showed that the BC in receiving with the WLC inside reached equal or higher signal-to-noise ratio than the conventional clinical setup comprising the transmit-only BC and a commercial receive-only flex-coil and created no artifacts. Simulations and on-bench measurements proved safety in terms of specific absorption rate and reflected transmit power. CONCLUSIONS: The results showed that the proposed WLC could be an alternative to standard cable-connected receive coils in clinical magnetic resonance imaging. As an example, with no cable connection, the WLC allowed wrist imaging on a 1.5 T clinical machine using a full-body BC for transmitting and receive with the desired signal-to-noise ratio, image quality, and safety.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Tecnologia sem Fio/instrumentação , Punho/diagnóstico por imagem , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído
13.
J Magn Reson ; 286: 78-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197694

RESUMO

In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA