Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 129126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163504

RESUMO

New pathogenic influenza virus strains are constantly emerging, posing a serious risk to both human health and economic growth. To effectively control the spread of this virus, there is an urgent need for early, rapid, sensitive, simple, and cost-effective detection technologies, as well as new and effective antiviral drugs. In this study, we have successfully achieved a significant milestone by successfully fusing the H7N9 influenza virus hemagglutinin (HA) protein with the nano-luciferase component, resulting in the development of a novel set of biosensors. This remarkable achievement marks the first instance of utilizing this biosensor technology for influenza antibody detection. Our biosensor technology also has the potential to facilitate the development of antiviral drugs targeting specific epitopes of the HA protein, providing a promising avenue for the treatment of H7N9 influenza virus infections. Furthermore, our biosensors have broad applications beyond H7N9 influenza virus detection, as they can be expanded for the detection of other pathogens and drug screening applications in the future. By providing a novel and effective solution to the detection and treatment of influenza viruses, our biosensors have the potential to revolutionize the field of infectious disease control.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas , Avaliação Pré-Clínica de Medicamentos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Antivirais
2.
Antibodies (Basel) ; 12(4)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38131804

RESUMO

In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus. Perhaps this will contribute to understanding some of the processes that precede the emergence of a pandemic virus. We assessed the specificity and virus-neutralizing capacity of antibodies reacting with the nucleocapsid and spike proteins of SARS-CoV-2 in a set of serum samples collected in October and November 2019, before the first COVID-19 cases were documented in this region. Blood serum samples from 799 residents of several regions of Siberia, Russia, (the Altai Territory, Irkutsk, Kemerovo and Novosibirsk regions, the Republic of Altai, Buryatia, and Khakassia) were analyzed. Sera of non-infected donors were collected within a study of seasonal influenza in the Russian Federation. The sample collection sites were located near the flyways and breeding grounds of wild waterfowl. The performance of enzyme-linked immunosorbent assay (ELISA) for the collected sera included the usage of recombinant SARS-CoV-2 protein antigens: full-length nucleocapsid protein (CoVN), receptor binding domain (RBD) of S-protein and infection fragment of the S protein (S5-6). There were 183 (22.9%) sera reactive to the S5-6, 270 (33.8%) sera corresponding to the full-length N protein and 128 (16.2%) sera simultaneously reactive to both these proteins. Only 5 out of 799 sera had IgG antibodies reactive to the RBD. None of the sera exhibited neutralizing activity against the nCoV/Victoria/1/2020 SARS-CoV-2 strain in Vero E6 cell culture. The data obtained in this study suggest that some of the population of the analyzed regions of Russia had cross-reactive humoral immunity against SARS-CoV-2 before the COVID-19 pandemic started. Moreover, among individuals from relatively isolated regions, there were significantly fewer reliably cross-reactive sera. The possible significance of these data and impact of cross-immunity to SARS-CoV-2 on the prevalence and mortality of COVID-19 needs further assessment.

3.
Foods ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893665

RESUMO

Moose (Alces alces) recombinant chymosin with a milk-clotting activity of 86 AU/mL was synthesized in the Kluyveromyces lactis expression system. After precipitation with ammonium sulfate and chromatographic purification, a sample of genetically engineered moose chymosin with a specific milk-clotting activity of 15,768 AU/mg was obtained, which was used for extensive biochemical characterization of the enzyme. The threshold of the thermal stability of moose chymosin was 55 °C; its complete inactivation occurred after heating at 60 °C. The total proteolytic activity of moose chymosin was 0.332 A280 units. The ratio of milk-clotting and total proteolytic activities of the enzyme was 0.8. The Km, kcat and kcat/Km values of moose chymosin were 4.7 µM, 98.7 s-1, and 21.1 µM-1 s-1, respectively. The pattern of change in the coagulation activity as a function of pH and Ca2+ concentration was consistent with the requirements for milk coagulants for cheese making. The optimum temperature of the enzyme was 50-55 °C. The introduction of Mg2+, Zn2+, Co2+, Ba2+, Fe2+, Mn2+, Ca2+, and Cu2+ into milk activated the coagulation ability of moose chymosin, while Ni ions on the contrary inhibited its activity. Using previously published data, we compared the biochemical properties of recombinant moose chymosin produced in bacterial (Escherichia coli) and yeast (K. lactis) producers.

4.
Vaccines (Basel) ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37112720

RESUMO

Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity. Searching for novel adjuvants for RBD-based vaccine formulations is considered a good strategy for enhancing its immunogenicity. Herein, we assess the immunogenicity of severe acute respiratory syndrome coronavirus 2 RBD conjugated to a polyglucin:spermidine complex (PGS) and dsRNA (RBD-PGS + dsRNA) in a mouse model. BALB/c mice were immunized intramuscularly twice, with a 2-week interval, with 50 µg of RBD, RBD with Al(OH)3, or conjugated RBD. A comparative analysis of serum RBD-specific IgG and neutralizing antibody titers showed that PGS, PGS + dsRNA, and Al(OH)3 enhanced the specific humoral response in animals. There was no significant difference between the groups immunized with RBD-PGS + dsRNA and RBD with Al(OH)3. Additionally, the study of the T-cell response in animals showed that, unlike adjuvants, the RBD-PGS + dsRNA conjugate stimulates the production of specific CD4+ and CD8+ T cells in animals.

5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430159

RESUMO

Since the onset of the COVID-19 pandemic, numerous publications have appeared describing autoimmune pathologies developing after a coronavirus infection, with several papers reporting autoantibody production during the acute period of the disease. Several viral diseases are known to trigger autoimmune processes, and the appearance of catalytic antibodies with DNase activity is one of the earliest markers of several autoimmune pathologies. Therefore, we analyzed whether IgG antibodies from blood plasma of SARS-CoV-2 patients after recovery could bind and hydrolyze DNA. We analyzed how vaccination of patients with adenovirus Sputnik V vaccine influences the production of abzymes with DNase activity. Four groups were selected for the analysis, each containing 25 patients according to their relative titers of antibodies to S-protein: with high and median titers, vaccinated with Sputnik V with high titers, and a control group of donors with negative titers. The relative titers of antibodies against DNA and the relative DNase activity of IgGs depended very much on the individual patient and the donor, and no significant correlation was found between the relative values of antibodies titers and their DNase activity. Our results indicate that COVID-19 disease and vaccination with adenoviral Sputnik V vaccine do not result in the development or enhancement of strong autoimmune reactions as in the typical autoimmune diseases associated with the production of anti-DNA and DNA hydrolyzing antibodies.


Assuntos
Anticorpos Catalíticos , COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Antinucleares , DNA , Imunoglobulina G , Desoxirribonucleases
6.
J Clin Med ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887818

RESUMO

Identification of factors behind the level and duration of persistence of the SARS-CoV-2 antibodies in the blood is assumed to set the direction for studying humoral immunity mechanisms against COVID-19, optimizing the strategy for vaccine use, antibody-based drugs, and epidemiological control of COVID-19. Objective: This study aimed to study the relationship between clinical and demographic characteristics and the level of IgG antibodies to the RBD of SARS-CoV-2 spike protein after COVID-19 in the long term. Residents of the Altai Region of Western Siberia of Russia, Caucasians, aged from 27 to 93 years (median 53.0 years), who recovered from COVID-19 between May 2020 and February 2021 (n = 44) took part in this prospective observational study. The titer of IgG antibodies to the RBD of SARS-CoV-2 spike protein was measured repeatedly in the blood at 4-13 months from the beginning of the clinical manifestation of COVID-19 via the method of enzyme-linked immunosorbent assay. The antibody titer positively correlated with age (p = 0.013) and COVID-19 pneumonia (p = 0.002) at 20-40 and 20-24 weeks from the onset of COVID-19 symptoms, respectively. Age was positively associated with antibody titer regardless of history of COVID-19 pneumonia (beta regression coefficient p = 0.009). The antibody titer decreased in 15 (34.1%) patients, increased in 10 (22.7%) patients, and did not change in 19 (43.2%) patients from the baseline to 48-49 weeks from the onset of COVID-19 symptoms, with seropositivity persisting in all patients. Age and COVID-19 pneumonia are possibly associated with higher IgG antibodies to the spike protein RBD of SARS-CoV-2 following COVID-19 in the long term. Divergent trends of anti-RBD IgG levels in adults illustrate inter-individual differences at 4-13 months from the onset of COVID-19 symptoms.

7.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897931

RESUMO

A set of heterocyclic products was synthesized from natural (+)-camphor and semi-synthetic (-)-camphor. Then, 2-Imino-4-thiazolidinones and 2,3-dihydrothiazoles were obtained using a three-step procedure. For the synthesized compounds, their antiviral activity against the vaccinia virus and Marburg virus was studied. New promising agents active against both viruses were found among the tested compounds.


Assuntos
Antivirais , Cânfora , Antivirais/farmacologia , Cânfora/farmacologia , Relação Estrutura-Atividade , Tiazóis/farmacologia
8.
Viruses ; 14(5)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632800

RESUMO

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Galinhas , Cricetinae , Modelos Animais de Doenças , Furões , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia
9.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216301

RESUMO

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Assuntos
Vacinas contra COVID-19/química , Vacinas contra COVID-19/farmacologia , Imunidade Humoral/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Animais , Sítios de Ligação , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Dextranos/química , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermidina/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia , Células Vero
10.
Vaccines (Basel) ; 10(1)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062757

RESUMO

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model. An analysis of the sera from mice immunized with both variants of the protein revealed that the mRBD expressed in CHO cells provides a significantly stronger humoral immune response compared with the RBD expressed in E.coli cells. A specific antibody titer of sera from mice immunized with mRBD was ten-fold higher than the sera from the mice that received pRBD in ELISA, and about 100-fold higher in a neutralization test. The data obtained suggests that mRBD is capable of inducing neutralizing antibodies against SARS-CoV-2.

11.
Molecules ; 27(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011529

RESUMO

When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502-8 µM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9-27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ácido Glicirrízico/química , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral , Animais , Antivirais/síntese química , COVID-19/virologia , Chlorocebus aethiops , Infecções por HIV/virologia , Células HeLa , Humanos , Técnicas In Vitro , Células Vero
12.
Molecules ; 28(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615498

RESUMO

Although the incidence and mortality of SARS-CoV-2 infection has been declining during the pandemic, the problem related to designing novel antiviral drugs that could effectively resist viruses in the future remains relevant. As part of our continued search for chemical compounds that are capable of exerting an antiviral effect against the SARS-CoV-2 virus, we studied the ability of triterpenic acid amides to inhibit the SARS-CoV-2 main protease. Molecular modeling suggested that the compounds are able to bind to the active site of the main protease via non-covalent interactions. The FRET-based enzyme assay was used to reveal that compounds 1e and 1b can inhibit the SARS-CoV-2 main protease at micromolar concentrations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Amidas/farmacologia , Amidas/metabolismo , Antivirais/química , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
13.
AIDS Res Hum Retroviruses ; 37(9): 716-723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33677988

RESUMO

The analysis of a pol gene fragment encoding protease and part of reverse transcriptase was carried out for 55 sera collected in 2016 and 2018 from HIV-1-infected patients diagnosed in 2014-2018 living in the south of Western Siberia, Russia: Altai Territory (n = 11), Republic of Altai (n = 15), Kemerovo region (n = 18), and Novosibirsk region (n = 11). CRF63_02A was the dominant genetic form (>70%) in the Altai Territory and Kemerovo and Novosibirsk regions, with subsubtype A6 comprising <30% of samples. In the Altai Republic, subsubtype A6 was predominant (53%), with 33% of viruses belonging to CRF63_02A. Four CRF63_02A/A6 unique recombinant forms were identified in the Altai Territory, Kemerovo Region, and the Altai Republic. A majority (11 of 15) of CRF63_02A viruses from Kemerovo were grouped in a cluster. Antiretroviral (ARV) drug resistance mutations were found in 6 (14%) of 43 drug-naive patients. This study provides new insights in HIV-1 molecular epidemiology and prevalence of transmitted ARV drug resistance mutations in Southwestern Siberia.


Assuntos
Infecções por HIV , HIV-1 , Resistência a Medicamentos , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/epidemiologia , Protease de HIV/genética , Transcriptase Reversa do HIV/genética , HIV-1/genética , Humanos , Mutação , Peptídeo Hidrolases , Filogenia , DNA Polimerase Dirigida por RNA , Sibéria/epidemiologia
14.
Vaccines (Basel) ; 9(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494530

RESUMO

One of the key stages in the development of mRNA vaccines is their delivery. Along with liposome, other materials are being developed for mRNA delivery that can ensure both the safety and effectiveness of the vaccine, and also facilitate its storage and transportation. In this study, we investigated the polyglucin:spermidine conjugate as a carrier of an mRNA-RBD vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The conditions for the self-assembling of mRNA-PGS complexes were optimized, including the selection of the mRNA:PGS charge ratios. Using dynamic and electrophoretic light scattering it was shown that the most monodisperse suspension of nanoparticles was formed at the mRNA:PGS charge ratio equal to 1:5. The average hydrodynamic particles diameter was determined, and it was confirmed by electron microscopy. The evaluation of the zeta potential of the investigated complexes showed that the particles surface charge was close to the zero point. This may indicate that the positively charged PGS conjugate has completely packed the negatively charged mRNA molecules. It has been shown that the packaging of mRNA-RBD into the PGS envelope leads to increased production of specific antibodies with virus-neutralizing activity in immunized BALB/c mice. Our results showed that the proposed polycationic polyglucin:spermidine conjugate can be considered a promising and safe means to the delivery of mRNA vaccines, in particular mRNA vaccines against SARS-CoV-2.

15.
Protein Pept Lett ; 23(2): 159-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26655727

RESUMO

Constructing a vaccine against HIV-1, able to induce production of broadly neutralizing antibodies, is crucial. We report here the selection and characterization of RDWSFDRWSLSEFWL peptide mimotope that binds specifically to bNAbs 2F5. The peptide mimotope was selected from 15-mer phage-displayed peptide library by using Mab 2F5 as the selecting agent. The most abundant RDWSFDRWSLSEFWL peptide was inserted into a carrier, an artificial polyepitope immunogen - TBI (T- and B-cell immunogen). TBI-2F5 polyepitope immunogen that includes the mimotope of 2F5 epitope was constructed. It was shown that sera of mice immunized with TBI-2F5 protein recognized TBI protein as well as RDWSFDRWSLSEFWL peptide. The capacity of sera of immunized mice to neutralize HIV-1 was demonstrated using subtype B env-pseudoviruses of HIV-1 QH0692.42 and PVO.4. Based on these results, we conclude that peptide mimotope of 2F5 epitope RDWSFDRWSLSEFWL can be an essential component for a successful HIV-vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Epitopos/imunologia , HIV-1/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes , Epitopos/química , Anticorpos Anti-HIV , HIV-1/patogenicidade , Humanos , Camundongos , Vacinas Sintéticas/química
16.
AIDS Res Hum Retroviruses ; 30(9): 912-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25050828

RESUMO

The HIV-1 epidemic in Russia is dominated by the former Soviet Union subtype A (A(FSU)) variant, but other genetic forms are circulating in the country. One is the recently described CRF63_02A1, derived from recombination between a CRF02_AG variant circulating in Central Asia and A(FSU), which has spread in the Novosibirsk region, Siberia. Here we phylogenetically analyze pol and env segments from 24 HIV-1 samples from the Novosibirsk region collected in 2013, with characterization of three new near full-length genome CRF63_02A1 sequences, and estimate the time of the most recent common ancestor (tMRCA) and the demographic growth of CRF63_02A1 using a Bayesian method. The analyses revealed that CRF63_02A1 is highly predominant in the Novosibirsk region (81.2% in pol sequences) and is transmitted both among injecting drug users and by heterosexual contact. Similarity searches with database sequences combined with phylogenetic analyses show that CRF63_02A1 is circulating in East Kazakhstan and the Eastern area of Russia bordering China. The analyses of near full-length genome sequences show that its mosaic structure is more complex than reported, with 18 breakpoints. The tMRCA of CRF63_02A1 was estimated around 2006, with exponential growth in 2008-2009 and subsequent stabilization. These results provide new insights into the molecular epidemiology, phylogeny, and phylodynamics of CRF63_02A1.


Assuntos
HIV-1/genética , Epidemiologia Molecular , Filogenia , Sequência de Bases , Primers do DNA , Feminino , HIV-1/classificação , Humanos , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Recombinação Genética , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA