Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Mar Life Sci Technol ; 6(1): 102-114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433970

RESUMO

Marine microorganisms have long been recognized as potential sources for drug discovery. Griseofulvin was one of the first antifungal natural products and has been used as an antifungal agent for decades. In this study, 12 new griseofulvin derivatives [(±)-1-2, (+)-3, (±)-4, 10-12, and 14-15] and two new griseofulvin natural products (9 and 16) together with six known analogues [(-)-3, 5-8, and 13] were isolated from the mangrove-derived fungus Nigrospora sp. QQYB1 treated with 0.3% NaCl or 2% NaBr in rice solid medium. Their 2D structures and absolute configurations were established by extensive spectroscopic analysis (1D and 2D NMR, HRESIMS), ECD spectra, computational calculation, DP4 + analysis, and X-ray single-crystal diffraction. Compounds 1-4 represent the first griseofulvin enantiomers with four absolute configurations (2S, 6'S; 2R, 6'R; 2S, 6'R; 2R, 6'S), and compounds 9-12 represent the first successful production of brominated griseofulvin derivatives from fungi via the addition of NaBr to the culture medium. In the antifungal assays, compounds 6 and 9 demonstrated significant inhibitory activities against the fungi Colletotrichum truncatum, Microsporum gypseum, and Trichophyton mentagrophyte with inhibition zones varying between 28 and 41 mm (10 µg/disc). The structure-activity relationship (SAR) was analyzed, which showed that substituents at C-6, C-7, C-6' and the positions of the carbonyl and double bond of griseofulvin derivatives significantly affected the antifungal activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00210-0.

2.
Nat Prod Res ; : 1-6, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535520

RESUMO

Trichorzin PA is a family of 18-residue peptaibols with linear and flexible peptide chains. The three-dimensional structures and biological activities of trichorzin PA peptaibols are largely uncharacterised. In this work, two previously identified peptaibols, trichorzin PA VI (1) and II (2), were isolated from Trichoderma lentiforme ML-P8-2. While for the first time, we report here the X-ray crystallographic structure of 1, antimicrobial activities against a panel of common pathogenic bacteria and fungi, and cytotoxicities of 1 and 2. In bioassays, 1 and 2 exhibited strong antimicrobial activities against the seven tested microbes, with MIC values in the range of 0.19-6.25 µM. Additionally, 1 and 2 displayed potent cytotoxicities against five human cancer cell lines, with IC50 values in the range of 0.01 ± 0.02-2.75 ± 0.17 µM. The bioassay results were generally better than those reported for other 18-residue peptaibols, including other trichorzin PA members.

3.
Eur J Med Chem ; 269: 116314, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527379

RESUMO

OSMAC strategy is a useful tool for discovering series of metabolites from microorganism. Five new sambutoxin derivatives (1-2, 4, 8-9), together with seven known compounds (3, 5-7, 10-12), were isolated from Talaromyces sp. CY-3 under OSMAC strategy and guidance of molecular networking. Their planar structures and absolute configurations were determined by NMR, HRESIMS, ECD spectra and common biosynthetic pathway. In bioassay, compounds 1-12 showed cytotoxicity to tumor cell lines with IC50 values in the range of 1.76-49.13 µM. The antitumor molecular mechanism of 10 was also explored. In vitro compound 10 significantly inhibited the growth and proliferation of two lung cancer cell lines (A549 and H1703). Furthermore, colony formation, EdU analysis, flow cytometry and Western blot analysis showed that 10 could induce cell cycle arrest in G0/G1 phase by promoting the expression of p53 and p21. The molecular mechanism of its antitumor effects in vitro is that 10 arrests the cell cycle by activating the p21/CyclinD1/Rb signaling pathway and the p53 pathway. Our results identified a lead small molecule compound with efficient antitumor growth and proliferation activity.


Assuntos
Antineoplásicos , Piridinas , Talaromyces , Talaromyces/química , Antineoplásicos/química , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Estrutura Molecular
4.
J Agric Food Chem ; 72(10): 5416-5427, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477043

RESUMO

Schizophyllum commune, a fleshy fungus, is an important medicinal and food-homologous mushroom in China. In this work, eight undescribed sesquiterpenes schizomycins A-H (1-8) and one new meroterpenoid schizomycin I (9) together with three known analogues (10-12) were isolated from fruiting bodies of S. commune. Their planar structures were established by extensive spectroscopic and mass spectrometric data. The absolute configurations of compounds 1, 2, and 4 were determined by single crystal X-ray diffraction, and compounds 3 and 5-9 were confirmed by electronic circular dichroism calculations. Anti-inflammatory activities of all isolated compounds were evaluated for their inhibitory effects on IL-6 and IL-1ß production in RAW 264.7 cells. Among them, compound 7 exhibited significant IL-6 inhibitory activity with an IC50 value of 3.6 µM. The results of molecular docking showed that compound 7 interacts with amino acid residues (Gly117, Lys118, Asp120, Thr166, and Try168) of the IL-6 receptor protein through hydrogen bonding.


Assuntos
Ascomicetos , Schizophyllum , Sesquiterpenos , Schizophyllum/química , Schizophyllum/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Dicroísmo Circular , Carpóforos , Sesquiterpenos/metabolismo , Estrutura Molecular
5.
J Nat Prod ; 87(2): 304-314, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320172

RESUMO

Pleosmaranes A-R (1-18), 18 new isopimarane-type diterpenoids, together with four known analogs (19-22), were isolated from the mangrove endophytic fungus Pleosporales sp. HNQQJ-1. Their structures and absolute configurations were established by analysis of their spectroscopic data and electronic circular dichroism (ECD) calculations. Compounds 1-9 possess an unusual aromatic B ring and a 20-nor-isopimarane skeleton. Compounds 15-17 contain a unique 2-oxabicyclo[2.2.2]octane moiety. Compound 18 features an unexpected 2-oxabicyclo[3.2.1]octane moiety. Compounds 8 and 12 exhibited a moderate inhibitory effect against LPS-induced NO production, with IC50 values of 19 and 25 µM, respectively.


Assuntos
Ascomicetos , Diterpenos , Abietanos/farmacologia , Octanos , Ascomicetos/química , Diterpenos/farmacologia , Estrutura Molecular
6.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354227

RESUMO

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Hepatócitos/metabolismo , Perfilação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
7.
EBioMedicine ; 100: 104964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181703

RESUMO

BACKGROUND: Quantitative nuclear magnetic resonance (NMR) metabolomics techniques provide detailed measurements of lipoprotein particle concentration. Metabolic dysfunction often represents a cluster of conditions, including dyslipidaemia, hypertension, and diabetes, that increase the risk of cardiovascular diseases (CVDs). However, the causal relationship between lipid profiles and blood pressure (BP) remains unclear. We performed a Mendelian Randomisation (MR) study to disentangle and prioritize the potential causal effects of major lipids, lipoprotein particles, and circulating metabolites on BP and pulse pressure (PP). METHODS: We employed single-nucleotide polymorphisms (SNPs) associated with major lipids, lipoprotein particles, and other metabolites from the UK Biobank as instrumental variables. Summary-level data for BP and PP were obtained from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Two-sample MR and MR Bayesian model averaging approaches (MR-BMA) were conducted to analyse and rank causal associations. FINDINGS: Genetically predicted TG was the most likely causal exposure among the major lipids to increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), with marginal inclusion probabilities (MIPs) of 0.993 and 0.847, respectively. Among the majority of lipoproteins and their containing lipids, including major lipids, genetically elevated TG in small high-density lipoproteins (S_HDL_TG) had the strongest association with the increase of SBP and DBP, with MIPs of 0.416 and 0.397, respectively. HDL cholesterol (HDL_C) and low-density lipoprotein cholesterol (LDL_C) were potential causal factors for PP elevation among the major lipids (MIP = 0.927 for HDL_C and MIP = 0.718 for LDL_C). Within the sub-lipoproteins, genetically predicted atherogenic lipoprotein particles (i.e., sub-very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and LDL particles) had the most likely causal impact on increasing PP. INTERPRETATION: This study provides genetic evidence for the causality of lipids on BP indicators. However, the effect size on SBP, DBP, and PP varies depending on the lipids' components and sizes. Understanding this potential relationship may inform the potential benefits of comprehensive management of lipid profiles for BP control. FUNDING: Key Research and Development Program of Hubei Province, Science and Technology Innovation Project of Huanggang Central Hospital of Yangtze University, the Hubei Industrial Technology Research Institute of Heart-Brain Diseases, and the Hubei Provincial Engineering Research Centre of Comprehensive Care for Heart-Brain Diseases.


Assuntos
Encefalopatias , Lipoproteínas , Adulto , Humanos , Pressão Sanguínea/genética , Triglicerídeos , Teorema de Bayes , Lipoproteínas/genética , LDL-Colesterol , HDL-Colesterol , Análise da Randomização Mendeliana , Fatores de Risco
8.
J Lipid Res ; 65(3): 100513, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295985

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina/genética , Histona Desmetilases/genética , Inflamação/genética , Lipídeos
9.
Mar Drugs ; 21(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38132921

RESUMO

Ascomylactam C (AsC) is a new 13-membered-ring macrocyclic alkaloid, which was first isolated and identified in 2019 from the secondary metabolites of the mangrove endophytic fungus Didymella sp. CYSK-4 in the South China Sea. AsC has been found to have a broad-spectrum cytotoxic activity. However, the antitumor effects in vivo and mechanisms of AsC remain unclear. The aim of this study was to describe the effects of AsC on lung cancer and melanoma cells and to explore the antitumor molecular mechanism of AsC. In vitro, we used plate colony formation experiments and demonstrated the ability of AsC to inhibit low-density tumor growth. An Annexin V/PI cell apoptosis detection experiment revealed that AsC induced tumor cell apoptosis. In vivo, AsC suppressed the tumor growth of LLC and B16F10 allograft significantly in mice, and promoted the infiltration of CD4+ T and CD8+ T cells in tumor tissues. Mechanistically, by analyses of Western blotting, immunofluorescence and ELISA analysis, we found that AsC increased ROS formation, induced endoplasmic reticulum (ER) stress, activated the protein kinase RNA-like ER kinase (PERK)/eukaryotic translation initiation factor (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway, and induced immunogenic cell death (ICD) of tumor cells. Our results suggest that AsC may be a potentially promising antitumor drug candidate.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Camundongos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Morte Celular Imunogênica , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Mitocôndrias/metabolismo , Fator de Transcrição CHOP/metabolismo
10.
Mar Drugs ; 21(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132952

RESUMO

Six previously undescribed cytosporone derivatives (phomotones A-E (1-5) and phomotone F (13)), two new spiro-alkanol phombistenes A-B (14-15), and seven known analogs (6-12) were isolated from the mangrove endophytic fungus Phomopsis sp. QYM-13. The structures of these compounds were elucidated using spectroscopic data analysis, electronic circular dichroism (ECD), and 13C NMR calculations. Compound 14 features an unprecedented 1,6-dioxaspiro[4.5]decane ring system. All isolates were evaluated for their inhibitory effect on nitric oxide (NO) in LPS-induced RAW264.7 cells. The results showed that compounds 1, 6, 8, and 11 exhibited potent bioactivities by comparing with positive control. Then, compound 1 displayed the anti-inflammatory effect by inhibiting the MAPK/NF-κB signaling pathways. Molecular docking further revealed the possible mechanism of compound 1 interaction with ERK protein.


Assuntos
Fungos , Phomopsis , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Transdução de Sinais , Estrutura Molecular
11.
Med Oncol ; 41(1): 32, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150063

RESUMO

Prostate cancer is an epithelial malignant tumor occurring in the prostate and is the most common malignant tumor in the male genitourinary system. In recent years, the incidence of prostate cancer in China has shown a trend of sudden increase. The search for new and effective drugs to treat prostate cancer is therefore extremely important.The canonical Wnt/ß-catenin signaling pathway has been shown to be involved in the regulation of tumor proliferation, migration and differentiation. Activation of the canonical Wnt/ß-Catenin signaling pathway in the prostate has oncogenic effects. Drugs targeting the canonical Wnt/ß-catenin signaling pathway have great potential in the treatment of prostate cancer. In this study, we found that Gastrodin could significantly inhibit the proliferation of prostate cancer cell line PC3 and DU145. Oral administration Gastrodin could significantly inhibit the tumor growth of PC3 cells subcutaneously injected. Gastrodin has an inhibitory effect on canonical Wnt/ß-Catenin signaling pathway in Prostate cancer, and this inhibitory effect can be abolished by Wnt/ß-Catenin agonist LiCl. These findings raise the possibility that Gastrodin can be used in the treatment of Prostate cancer by targeting canonical Wnt/ß-Catenin signaling pathway.


Assuntos
Carcinoma , Neoplasias da Próstata , Masculino , Humanos , Via de Sinalização Wnt , Neoplasias da Próstata/tratamento farmacológico , Álcoois Benzílicos/farmacologia , Proliferação de Células
12.
Mar Drugs ; 21(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37999390

RESUMO

Five new polyketides, including two chromones (1-2), two phenyl derivatives (4-5), and a tandyukusin derivative (6), along with five known polyketides (3 and 7-10) were isolated from mangrove endophytic fungus Trichoderma lentiforme ML-P8-2. The planar structures of compounds were elucidated via detailed 1D, 2D NMR, and HR-ESI-MS analysis. ECD spectra, optical rotation values calculation, and alkali hydrolysis were applied in the determination of the absolute configuration of the new compounds. In bioassays, 6 and 9 exhibited promising antifungal activities against Penicillium italicum, with an MIC value of 6.25 µM for both compounds. Moreover, 3 displayed moderate AChE inhibitory activity with an IC50 value of 20.6 ± 0.3 µM.


Assuntos
Hypocreales , Policetídeos , Policetídeos/química , Antifúngicos/farmacologia , Espectroscopia de Ressonância Magnética , Estrutura Molecular
13.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003285

RESUMO

Four new sorbicillinoids, named trichodermolide E (1), trichosorbicillin J (2), bisorbicillinolide B (3), and demethylsorbiquinol (5), together with eight known compounds (4, 6-12), were isolated from the cultures of the mangrove-derived fungus Trichoderma reesei BGRg-3. The structures of the new compounds were determined by analyzing their detailed spectroscopic data, while the absolute configurations were further determined through electronic circular dichroism calculations. Snatzke's method was additionally used to determine the absolute configurations of the diol moiety in 1. In a bioassay, compounds 7 and 10 performed greater inhibitory activities on interleukin-6 and interleukin-1ß than the positive control (dexamethasone) at the concentration of 25 µM. Meanwhile, compounds 5 and 6 showed potent effects with stronger inhibition than dexamethasone on IL-1ß at the same concentration.


Assuntos
Hypocreales , Trichoderma , Interleucina-6 , Interleucina-1beta , Trichoderma/química , Dicroísmo Circular , Dexametasona , Estrutura Molecular
14.
Phytochemistry ; 215: 113868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734513

RESUMO

Ten previously undescribed meroterpenoids, cyclohexenoneterpenes A-J (1-7, 18-20), together with 10 known analogues (8-17) were isolated from the mangrove-associated fungus Penicillium sp. N-5. Their structures were elucidated on the basis of extensive spectroscopic and mass spectrometric data. The absolute configurations of the undescribed compounds were assigned by electronic circular dichroism calculations, the modified Mosher's method, NMR calculations and DP4+ analysis. In the bioassay, compounds 10, 11, 15, and 20 exhibited cytotoxicities against SNB-19, MDA-MB-231, MDA-MB-435 and HCT-116 cell lines with IC50 values ranging from 1.4 to 19.1 µM.


Assuntos
Penicillium , Penicillium/química , Espectroscopia de Ressonância Magnética , Dicroísmo Circular , Espectrometria de Massas , Fungos , Estrutura Molecular
15.
Fitoterapia ; 171: 105692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37757921

RESUMO

Two new 12- or 13- membered-ring macrocyclic alkaloids ascomylactam D and E (1 & 2), and a pair of new enantiomer (+)- and (-)- didymetone (3) were purified from the mangrove endophytic fungus Didymella sp. CYSK-4. Their structures and absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, ECD and 13C NMR calculations. Compound 2 exhibited significant cytotoxicity against human A549 and KYSE 150 cancer cell lines with IC50 values of 2.8 µM and 5.9 µM, respectively.


Assuntos
Antineoplásicos , Ascomicetos , Humanos , Estrutura Molecular , Ascomicetos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética
16.
Chem Biodivers ; 20(8): e202300735, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37423890

RESUMO

Acetylcholinesterase (AChE) inhibitory activity-guided studies on the mangrove-derived endophytic fungus Penicillium citrinum YX-002 led to the isolation of nine secondary metabolites, including one new quinolinone derivative, quinolactone A (1), a pair of epimers quinolactacin C1 (2) and 3-epi-quinolactacin C1 (3), together with six known analogs (4-9). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses, and compared with data in the literature. The absolute configurations of compounds 1-3 was determined by combination of electronic circular dichroism (ECD) calculations and X-Ray single crystal diffraction technique using CuKα radiation. In bioassays, compounds 1, 4 and 7 showed moderate AChE inhibitory activities with IC50 values of 27.6, 19.4 and 11.2 µmol/L, respectively. The structure-activity relationships (SARs) analysis suggested that the existence of carbonyl group on C-3 and the oxygen atom on the five-membered ring were beneficial to the activity. Molecular docking results showed that compound 7 had a lower affinity interaction energy (-9.3 kcal/mol) with stronger interactions with different sites in AChE activities, which explained its higher activities.


Assuntos
Alcaloides , Penicillium , Estrutura Molecular , Acetilcolinesterase , Simulação de Acoplamento Molecular , Penicillium/química , Alcaloides/química
17.
ACS Omega ; 8(29): 26628-26634, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521628

RESUMO

Two new octaketides, cytosporones W (1) and X (2), along with eight known cytosporone derivatives [(±)-3-9], were isolated from mangrove endophytic fungus Diaporthe sp. ZJHJYZ-1. Compounds 1 and 2 were a pair of epimers, whose configuration of C-1 could mutually convert, causing racemization of the lactone ring. The planar structures of compounds were elucidated through detailed 1D, 2D NMR, and HR-ESI-MS analysis. ECD spectra comparison and modified Mosher ester method were applied to determine the absolute configuration of 1 and 2. In bioassays, (±)-3 exhibited promising inhibitory activities against Bacillus subtilis, Pseudomonas aeruginosa, and Penicillium italicum with MIC, respectively, for 12.5, 12.5, and 3.13 µM.

18.
Front Cardiovasc Med ; 10: 1151575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324618

RESUMO

Background: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, which poses huge disease burdens in China. A study was conducted to systematically analyze the recent prevalence trend of AF and age-related disparities in AF risk among the nationwide healthy check-up population. Method: We conducted a nationwide cross-sectional study involving 3,049,178 individuals ≥35 years from health check-up centers to explore the prevalence and trend of AF by age, sex, and region from 2012 to 2017. Additionally, we analyzed risk factors associated with AF among the overall population and different age groups via the Boruta algorithm, the LASSO regression, and the Logistic regression. Result: The age-, sex-. and regional-standardized prevalence of AF kept stable between 0.4%-0.45% among national physical examination individuals from 2012 to 2017. However, the prevalence of AF showed an undesirable upward trend in the 35-44-year age group (annual percentage changes (APC): 15.16 [95%CI: 6.42,24.62]). With increasing age, the risk of AF associated with the overweight or obesity gradually exceeds that associated with diabetes and hypertension. In addition to traditional leading risk factors such as age≥65 and coronary heart disease, elevated uric acid and impaired renal function were tightly correlated with AF in the population. Conclusion: The significant rise in the prevalence of AF in the 35-44 age group reminds us that in addition to the elderly (the high-risk group), younger people seem to be in more urgent need of attention. Age-related disparities in AF risk also exist. This updated information may provide references for the national prevention and control of AF.

19.
Obesity (Silver Spring) ; 31(6): 1584-1599, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37203337

RESUMO

OBJECTIVE: Adipogenesis has been recognized as an attractive avenue for maintaining systemic homeostasis, with peroxisome proliferator-activated receptor γ (PPARγ) showing predominant roles in this process. This study aims to identify promising drug candidates by targeting PPARγ for adipogenesis-based metabolic homeostasis and to clarify the detailed mechanisms. METHODS: Molecular events contributing to adipogenesis were screened, which identified PPARγ as having the predominant role. Promising agents of adipogenesis agonism were screened using a PPARγ-based luciferase reporter assay. The functional capacity and molecular mechanisms of magnolol were intensively examined using 3T3-L1 preadipocytes and dietary models. RESULTS: This study found that F-box only protein 9 (FBXO9)-mediated lysine 11 (K11)-linked ubiquitination and proteasomal degradation of PPARγ are critically required during adipogenesis and systemic homeostasis. Notably, magnolol was identified as a potent adipogenesis activator by stabilizing PPARγ. The pharmacological mechanisms investigations clarified that magnolol directly binds to PPARγ and markedly interrupts its interaction with FBXO9, leading to a decline in K11-linked ubiquitination and proteasomal degradation of PPARγ. Clinically important, magnolol treatment significantly facilitates adipogenesis in vitro and in vivo. CONCLUSIONS: The downregulation of K11-linked ubiquitination of PPARγ caused by FBOX9 is essentially required for adipogenesis, while targeting PPARγ-FBXO9 interaction provides a new avenue for the therapy of adipogenesis-related metabolic disorder.


Assuntos
Adipogenia , Proteínas F-Box , Camundongos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Compostos de Bifenilo/farmacologia , Homeostase , Células 3T3-L1
20.
Exp Gerontol ; 178: 112202, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37178875

RESUMO

Skin aging is a complex process involving intricate genetic and environmental factors. In this study, we performed a comprehensive analysis of the transcriptional regulatory landscape of skin aging in canines. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify aging-related gene modules. We subsequently validated the expression changes of these module genes in single-cell RNA sequencing (scRNA-seq) data of human aging skin. Notably, basal cell (BC), spinous cell (SC), mitotic cell (MC), and fibroblast (FB) were identified as the cell types with the most significant gene expression changes during aging. By integrating GENIE3 and RcisTarget, we constructed gene regulation networks (GRNs) for aging-related modules and identified core transcription factors (TFs) by intersecting significantly enriched TFs within the GRNs with hub TFs from WGCNA analysis, revealing key regulators of skin aging. Furthermore, we demonstrated the conserved role of CTCF and RAD21 in skin aging using an H2O2-stimulated cell aging model in HaCaT cells. Our findings provide new insights into the transcriptional regulatory landscape of skin aging and unveil potential targets for future intervention strategies against age-related skin disorders in both canines and humans.


Assuntos
Envelhecimento da Pele , Fatores de Transcrição , Humanos , Animais , Cães , Fatores de Transcrição/genética , Envelhecimento da Pele/genética , Peróxido de Hidrogênio , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA