Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33072886

RESUMO

The spin- 1 2 kagome antiferromagnet is considered an ideal host for a quantum spin liquid (QSL) ground state. We find that when the bonds of the kagome lattice are modulated with a periodic pattern, new quantum ground states emerge. Newly synthesized crystalline barlowite (Cu4(OH)6FBr) and Zn-substituted barlowite demonstrate the delicate interplay between singlet states and spin order on the spin- 1 2 kagome lattice. Comprehensive structural measurements demonstrate that our new variant of barlowite maintains hexagonal symmetry at low temperatures with an arrangement of distorted and undistorted kagome triangles, for which numerical simulations predict a pinwheel valence bond crystal (VBC) state instead of a QSL. The presence of interlayer spins eventually leads to an interesting pinwheel q = 0 magnetic order. Partially Zn-substituted barlowite (Cu3.44Zn0.56(OH)6FBr) has an ideal kagome lattice and shows QSL behavior, indicating a surprising robustness of the QSL against interlayer impurities. The magnetic susceptibility is similar to that of herbertsmithite, even though the Cu2+ impurities are above the percolation threshold for the interlayer lattice and they couple more strongly to the nearest kagome moment. This system is a unique playground displaying QSL, VBC, and spin order, furthering our understanding of these highly competitive quantum states.

2.
Phys Rev Mater ; 4(12)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34095744

RESUMO

Realizing a quantum spin liquid (QSL) ground state in a real material is a leading issue in condensed matter physics research. In this pursuit, it is crucial to fully characterize the structure and influence of defects, as these can significantly affect the fragile QSL physics. Here, we perform a variety of cutting-edge synchrotron X-ray scattering and spectroscopy techniques, and we advance new methodologies for site-specific diffraction and L-edge Zn absorption spectroscopy. The experimental results along with our first-principles calculations address outstanding questions about the local and long-range structures of the two leading kagome QSL candidates, Zn-substituted barlowite (Cu3Zn x Cu1-x (OH)6FBr) and herbertsmithite (Cu3Zn(OH)6Cl2). On all length scales probed, there is no evidence that Zn substitutes onto the kagome layers, thereby preserving the QSL physics of the kagome lattice. Our calculations show that antisite disorder is not energetically favorable and is even less favorable in Zn-barlowite compared to herbertsmithite. Site-specific X-ray diffraction measurements of Zn-barlowite reveal that Cu2+ and Zn2+ selectively occupy distinct interlayer sites, in contrast to herbertsmithite. Using the first measured Zn L-edge inelastic X-ray absorption spectra combined with calculations, we discover a systematic correlation between the loss of inversion symmetry from pseudo-octahedral (herbertsmithite) to trigonal prismatic coordination (Zn-barlowite) with the emergence of a new peak. Overall, our measurements suggest that Zn-barlowite has structural advantages over herbertsmithite that make its magnetic properties closer to an ideal QSL candidate: its kagome layers are highly resistant to nonmagnetic defects while the interlayers can accommodate a higher amount of Zn substitution.

3.
Phys Rev Mater ; 3(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32166214

RESUMO

Theoretical studies have predicted the existence of topological magnons in honeycomb compounds with stripy or zigzag antiferromagnetic (AFM) order. Here we report the discovery of AFM order in the layered and noncentrosymmetric honeycomb nickelate Ni2Mo3O8 through a combination of magnetization, specific heat, x-ray and neutron diffraction, and electron paramagnetic resonance measurements. The AFM order is complex, with a mixture of stripy and zigzag character on an integer spin noncentrosymmetric honeycomb lattice (P63 mc). Further, each of the two sublattices of the bipartite honeycomb lattice is comprised of a different crystal field environment, i.e., octahedral and tetrahedral Ni2+, respectively, enabling independent substitution on each. Replacement of Ni by Mg on the octahedral site suppresses the long-range magnetic order and results in a weakly ferromagnetic state. Conversely, substitution of Fe for Ni enhances the strength of the AFM exchange and increases the ordering temperature. Thus, Ni2Mo3O8 provides a platform on which to explore the rich physics of S = 1 on the honeycomb lattice in the presence of competing magnetic interactions with a noncentrosymmetric, formally piezopolar, crystal structure.

4.
Nat Commun ; 9(1): 4367, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349043

RESUMO

Recently measurements on various spin-1/2 quantum magnets such as H3LiIr2O6, LiZn2Mo3O8, ZnCu3(OH)6Cl2 and 1T-TaS2-all described by magnetic frustration and quenched disorder but with no other common relation-nevertheless showed apparently universal scaling features at low temperature. In particular the heat capacity C[H, T] in temperature T and magnetic field H exhibits T/H data collapse reminiscent of scaling near a critical point. Here we propose a theory for this scaling collapse based on an emergent random-singlet regime extended to include spin-orbit coupling and antisymmetric Dzyaloshinskii-Moriya (DM) interactions. We derive the scaling C[H, T]/T ~ H-γFq[T/H] with Fq[x] = xq at small x, with q ∈ {0, 1, 2} an integer exponent whose value depends on spatial symmetries. The agreement with experiments indicates that a fraction of spins form random valence bonds and that these are surrounded by a quantum paramagnetic phase. We also discuss distinct scaling for magnetization with a q-dependent subdominant term enforced by Maxwell's relations.

5.
Ultramicroscopy ; 191: 56-65, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29843097

RESUMO

Combining multiple fast image acquisitions to mitigate scan noise and drift artifacts has proven essential for picometer precision, quantitative analysis of atomic resolution scanning transmission electron microscopy (STEM) data. For very low signal-to-noise ratio (SNR) image stacks - frequently required for undistorted imaging at liquid nitrogen temperatures - image registration is particularly delicate, and standard approaches may either fail, or produce subtly specious reconstructed lattice images. We present an approach which effectively registers and averages image stacks which are challenging due to their low-SNR and propensity for unit cell misalignments. Registering all possible image pairs in a multi-image stack leads to significant information surplus. In combination with a simple physical picture of stage drift, this enables identification of incorrect image registrations, and determination of the optimal image shifts from the complete set of relative shifts. We demonstrate the effectiveness of our approach on experimental, cryogenic STEM datasets, highlighting subtle artifacts endemic to low-SNR lattice images and how they can be avoided. High-SNR average images with information transfer out to 0.72 Å are achieved at 300 kV and with the sample cooled to near liquid nitrogen temperature.

6.
Inorg Chem ; 56(21): 12866-12880, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29072839

RESUMO

Among oxide compounds with direct metal-metal bonding, the Y5Mo2O12 (A5B2O12) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B2O10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal-metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal-metal bonding have integer oxidation states resulting from the lifting of orbital degeneracy typically induced by the metal-metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln5Mo2O12 (Ln = La-Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo2O10 and LaO6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1-2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La5Mo2O11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. This represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.

7.
J Am Chem Soc ; 138(9): 3107-17, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26919583

RESUMO

The nonheme iron complex, [Fe(NO)(N3PyS)]BF4, is a rare example of an {FeNO}(7) species that exhibits spin-crossover behavior. The comparison of X-ray crystallographic studies at low and high temperatures and variable-temperature magnetic susceptibility measurements show that a low-spin S = 1/2 ground state is populated at 0-150 K, while both low-spin S = 1/2 and high-spin S = 3/2 states are populated at T > 150 K. These results explain the observation of two N-O vibrational modes at 1737 and 1649 cm(-1) in CD3CN for [Fe(NO)(N3PyS)]BF4 at room temperature. This {FeNO}(7) complex reacts with dioxygen upon photoirradiation with visible light in acetonitrile to generate a thiolate-ligated, nonheme iron(III)-nitro complex, [Fe(III)(NO2)(N3PyS)](+), which was characterized by EPR, FTIR, UV-vis, and CSI-MS. Isotope labeling studies, coupled with FTIR and CSI-MS, show that one O atom from O2 is incorporated in the Fe(III)-NO2 product. The O2 reactivity of [Fe(NO)(N3PyS)]BF4 in methanol is dramatically different from CH3CN, leading exclusively to sulfur-based oxidation, as opposed to NO· oxidation. A mechanism is proposed for the NO· oxidation reaction that involves formation of both Fe(III)-superoxo and Fe(III)-peroxynitrite intermediates and takes into account the experimental observations. The stability of the Fe(III)-nitrite complex is limited, and decay of [Fe(III)(NO2)(N3PyS)](+) leads to {FeNO}(7) species and sulfur oxygenated products. This work demonstrates that a single mononuclear, thiolate-ligated nonheme {FeNO}(7) complex can exhibit reactivity related to both nitric oxide dioxygenase (NOD) and nitrite reductase (NiR) activity. The presence of the thiolate donor is critical to both pathways, and mechanistic insights into these biologically relevant processes are presented.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Óxido Nítrico/química , Oxigênio/química , Compostos de Sulfidrila/química , Espectroscopia de Ressonância de Spin Eletrônica , Processos Fotoquímicos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA